1,217 research outputs found

    Molecular and genetic characterisation of a non-canonical auxin signalling mechanism

    Get PDF
    Developmental programmes within multicellular organisms originate from a single cell that proliferates into numerous cells ultimately differentiating to make up specialized tissues and organs. Tight temporal and spatial regulation of the genes involved in these processes is essential for proper development of the organism. In plants, the hormone auxin controls almost all aspects of plant development through the gene regulatory properties of Auxin Response Factors (ARFs). Plant hormone signalling is most commonly based on de-repression via degradation of transcriptional repressors. Recently, a non-canonical signalling mechanism for the plant hormone auxin in organ development was uncovered in which the auxin has a direct effect on the activity of a transcription factor complex towards its downstream targets. In this pathway, ETTIN (ETT/ARF3) is a pivotal component. This thesis reports that ETT binds auxin directly and acts as a receptor in non-canonical auxin signalling to modulate gene expression, independently of the canonical auxin signalling machinery. Due to this direct auxin-effect on ETT, this pathway is reminiscent of animal hormonal pathways that often involve direct transcription factor-hormone interactions that modulate gene expression. In addition, this thesis identified that auxin has a direct and ETT-dependent effect on the chromatin environment of ETT-target genes. This is another feature reminiscent of hormonal signalling in animals and in agreement with ETT physically interacting with several chromatin modifying complexes in an auxin-sensitive manner. Above all this thesis identified that binding of the auxin molecule leads to ETTIN dissociating from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of target gene expression. Finally, using targeted mutations of ETT-binding cis-regulatory elements, I dissected the importance of these elements for the spatio-temporal regulation of ETT-target genes. Together, unlike canonical auxin signalling, this non-canonical auxin signalling provides an instantly reversible expression switch required for precise polarity establishment during gynoecium development

    Integrating Manual and Automatic Annotation for the Creation of Discourse Network Data Sets

    Get PDF
    This article investigates the integration of machine learning in the political claim annotation workflow with the goal to partially automate the annotation and analysis of large text corpora. It introduces the MARDY annotation environment and presents results from an experiment in which the annotation quality of annotators with and without machine learning based annotation support is compared. The design and setting aim to measure and evaluate: a) annotation speed; b) annotation quality; and c) applicability to the use case of discourse network generation. While the results indicate only slight increases in terms of annotation speed, the authors find a moderate boost in annotation quality. Additionally, with the help of manual annotation of the actors and filtering out of the false positives, the machine learning based annotation suggestions allow the authors to fully recover the core network of the discourse as extracted from the articles annotated during the experiment. This is due to the redundancy which is naturally present in the annotated texts. Thus, assuming a research focus not on the complete network but the network core, an AI-based annotation can provide reliable information about discourse networks with much less human intervention than compared to the traditional manual approach

    Fast machine-learning online optimization of ultra-cold-atom experiments

    Get PDF
    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system

    The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

    Get PDF
    Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease

    Paclitaxel alters the expression and specific activity of deoxycytidine kinase and cytidine deaminase in non-small cell lung cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We observed that paclitaxel altered the pharmacokinetic properties of gemcitabine in patients with non-small cell lung cancer (NSCLC) and limited the accumulation of gemcitabine and its metabolites in various primary and immortalized human cells. Therefore, we classified the drug-drug interaction and the effects of paclitaxel on deoxycytidine kinase (dCK) and cytidine deaminase (CDA) in three NSCLC cell lines. These enzymes are responsible for the metabolism of gemcitabine to its deaminated metabolite dFdU (80% of the parent drug) and the phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP. These metabolites appear to relate to sensitivity and tolerability of gemcitabine based on previous animal and laboratory studies.</p> <p>Methods</p> <p>Three immortalized human cells representative of the most common histological subtypes identified in patients with advanced NSCLC were exposed to the individual drugs or combinations to complete a multiple drug effect analysis. These same cell lines were exposed to vehicle-control or paclitaxel and the mRNA levels, protein expression and specific activity of dCK and CDA were compared. Comparisons were made using a two-tailed paired t-test or analysis of variance with a P value of < 0.05 considered significant.</p> <p>Results</p> <p>The multiple drug effect analysis indicated synergy for H460, H520 and H838 cells independent of sequence. As anticipated, paclitaxel-gemcitabine increased the number of G2/M cells, whereas gemcitabine-paclitaxel increased the number of G0/G1 or S cells. Paclitaxel significantly decreased dCK and CDA mRNA levels in H460 and H520 cells (40% to 60%, P < 0.05) and lowered dCK protein (24% to 56%, P < 0.05) without affecting CDA protein. However, paclitaxel increased both dCK (10% to 50%) and CDA (75% to 153%) activity (P < 0.05). Paclitaxel caused substantial declines in the accumulation of the deaminated and phosphorylated metabolites in H520 cells (P < 0.05); the metabolites were not measurable in the remaining two cell lines. The ratio of dCK to CDA mRNA levels corresponded to the combination index (CI) estimated for sequential paclitaxel-gemcitabine.</p> <p>Conclusion</p> <p>In summary, paclitaxel altered the mRNA levels and specific activity of dCK and CDA and these effects could be dependent on histological subtype. More cell and animal studies are needed to further characterize the relationship between mRNA levels and the overall drug-drug interaction and the potential to use histological subtype as a predictive factor in the selection of an appropriate anticancer drug regimen.</p

    The Fetal Hypothalamus Has the Potential to Generate Cells with a Gonadotropin Releasing Hormone (GnRH) Phenotype

    Get PDF
    Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation

    Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer

    Get PDF
    Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a &gt;2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies

    C4.4A as a candidate marker in the diagnosis of colorectal cancer

    Get PDF
    C4.4A is a member of the Ly-6 family with restricted expression in non-transformed tissues. C4.4A expression in human cancer has rarely been evaluated. Thus, it became important to explore C4.4A protein expression in human tumour tissue to obtain an estimate on the frequency of expression and the correlation with tumour progression, the study focusing on colorectal cancer. The analysis of C4.4A in human tumour lines by western blot and immunoprecipitation using polyclonal rabbit antibodies that recognize different C4.4A epitopes revealed C4.4A oligomer and heavily glycosylated C4.4A isoform expression that, in some instances, inhibited antibody binding and interaction with the C4.4A ligand galectin-3. In addition, tumour cell lines released C4.4A by vesicle shedding and proteolytic cleavage. C4.4A was expressed in over 80% of primary colorectal cancer and liver metastasis with negligible expression in adjacent colonic mucosa, inflamed colonic tissue and liver. This compares well with EpCAM and CO-029 expression in over 90% of colorectal cancer. C4.4A expression was only observed in about 50% of pancreatic cancer and renal cell carcinoma. By de novo expression in colonic cancer tissue, we consider C4.4A as a candidate diagnostic marker in colorectal cancer, which possibly can be detected in body fluids
    corecore