137 research outputs found

    Sustainable manufacture of insect repellents derived from Nepeta cataria

    Get PDF
    Malaria devastates sub-Saharan Africa; the World Health Organization (WHO) estimates that 212 million people contract malaria annually and that the plasmodium virus will kill 419 000 in 2017. The disease affects rural populations who have the least economic means to fight it. Impregnated mosquito nets have reduced the mortality rate but the Anopheles mosquitoes are changing their feeding patterns and have become more active at dusk and early morning rather than after 22h00 as an adaptation to the nets. Everyone is susceptible to the Anopheles at these times but infants and pregnant women are the most vulnerable to the disease. Plant-based mosquito repellents are as effective as synthetic repellents that protect people from bites. They are sustainable preventative measures against malaria not only because of their efficacy but because the local population can produce and distribute them, which represents a source of economic growth for rural areas. Here, we extract and test the essential oil nepetalactone from Nepeta cataria via steam distillation. Families in endemic areas of Burundi found them effective against bites but commented that the odor was pungent. An epidemiological study is required to establish its clinical efficacy

    Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

    Full text link
    Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of biotransformation enzymes specific for BPA metabolism in 50 first‐ and second‐trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender‐matched adult liver controls, UDP‐glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas ÎČ‐glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. © 2012 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:116‐123, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21459Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96672/1/jbt21459.pd

    Occurrence of legacy and replacement plasticizers, bisphenols, and flame retardants in potable water in Montreal and South Africa

    Get PDF
    The occurrence of thirty-nine contaminants including plasticizers, bisphenols, and flame retardants in potable water from Montreal and South Africa was analyzed to determine their presence and concentrations in different water sources. In Montreal, five bottled water (BW) brands and three drinking water treatment plants (DWTP) were included. In South Africa, water was sampled from one urban DWTP located in Pretoria, Gauteng, and one rural DWTP located in Vhembe, along with water from the same rural DWTP which had been stored in small and large plastic containers. A combination of legacy compounds, typically with proven toxic effects, and replacement compounds was investigated. Bisphenols, Dechlorane-602, Dechlorane-603, and s-dechlorane plus (s-DP) were not detected in any water samples, and a-dechlorane plus (a-DP) was only detected in one sample from Pretoria at a concentration of 1.09 ng/L. Lower brominated polybrominated diphenyl ethers (PBDE)s were detected more frequently than higher brominated PBDEs, always at low concentrations of <2 ng/L, and total PBDE levels were statistically higher in South Africa than in Montreal. Replacement flame retardants, organophosphate esters (OPEs), were detected at statistically higher concentrations in Montreal's BW (68.56 ng/L), drinking water (DW) (421.45 ng/L) and Vhembe (198.33 ng/L) than legacy PBDEs. Total OPE concentrations did not demonstrate any geographical trend; however, levels were statistically higher in Montreal's DW than Montreal's BW. Plasticizers were frequently detected in all samples, with legacy compounds DEHP, DBP, and replacement DINCH being detected in 100 % of samples with average concentrations ranging from 6.89 ng/L for DEHP in Pretoria to 175.04 ng/L for DINCH in Montreal's DW. Total plasticizer concentrations were higher in Montreal than in South Africa. The replacement plasticizers (DINCH, DINP, DIDA, and DEHA) were detected at similar frequencies and concentrations as legacy plasticizers (DEHP, DEP, DBP, MEHP). For the compounds reported in earlier studies, the concentrations detected in the present study were similar to other locations. These compounds are not currently regulated in drinking water but their frequent detection, especially OPEs and plasticizers, and the presence of replacement compounds at similar or higher levels than their legacy compounds demonstrate the importance of further investigating the prevalence and the ecological or human health effects of these compounds.The Canadian Institutes of Health Research (CIHR) and the Canadian Foundation for Innovation through the John R. Evans Leaders Fund grant,http://www.elsevier.com/locate/scitotenvhj2023School of Health Systems and Public Health (SHSPH

    An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling

    Get PDF
    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as “additives”) contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times

    Contribution Ă  l'analyse des produits naturels : alcaloĂŻdes de Physalis peruviana L.

    No full text
    Doctorat en sciences chimiques -- UCL, 199
    • 

    corecore