209 research outputs found

    The role of laccase in prostaglandin production by Cryptococcus neoformans

    Full text link
    Recently, it has been demonstrated that the opportunistic fungal pathogen Cryptococcus neoformans can synthesize authentic immunomodulatory prostaglandins. The mechanism by which this takes place is unclear as there is no cyclooxygenase homologue in the cryptococcal genome. In this study, we show that cryptococcal production of both PGE 2 and PGF 2α can be chemically inhibited by caffeic acid, resveratrol and nordihydroguaiaretic acid. These polyphenolic molecules are frequently used as inhibitors of lipoxygenase enzymes; however, blast searches of the cryptococcal genome were unable to identify any homologues of mammalian, plant or fungal lipoxygenases. Next we investigated cryptococcal laccase, an enzyme known to bind polyphenols, and found that either antibody depletion or genetic deletion of the primary cryptococcal laccase ( lac1 δ) resulted in a loss of cryptococcal prostaglandin production. To determine how laccase is involved, we tested recombinant laccase activity on the prostaglandin precursors, arachidonic acid (AA), PGG 2 and PGH 2 . Using mass spectroscopy we determined that recombinant Lac1 does not modify AA or PGH 2 , but does have a marked activity toward PGG 2 converting it to PGE 2 and 15-keto-PGE 2 . These data demonstrate a critical role for laccase in cryptococcal prostaglandin production, and provides insight into a new and unique fungal prostaglandin pathway.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73041/1/j.1365-2958.2008.06245.x.pd

    A Key Role for Old Yellow Enzyme in the Metabolism of Drugs by Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F2α synthase homologue, we have identified a novel “old yellow enzyme” from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH2 to PGF2α as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and β-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action

    LACK OF KNOWLEDGE ABOUT ORGAN DONATION AND TRANSPLANTATION AMONG DENTAL STUDENTS

    Get PDF
    To assess the level of knowledge of Brazilian dental students about organ donation and transplantation. The 477 undergraduate Brazilian dental students, in the first or in the last year of the course, were questioned from March 2011 to June 2012. Data were analyzed by using descriptive statistics and differences between groups were analyzed by the chi-squared test. Only 84 (18%) reported having already attended to some class about the topic organ transplantation. Students reported knowing the brain death definition, but they did not know how the diagnosis of brain death is made (P =0.148). Students in the first and fifth years did not know about the maintenance care of potential organ donors (P=0.148) and how to approach the family about donation in case of brain death (P=0.561). Our study has demonstrated a lack of knowledge about organ donation and transplantation among undergraduate students in the four dental schools investigated. Nationwide, curriculum implementation is suggested in order to prepare dental care professions to integrate a transplantation team. Further investigation is necessary in order to evaluate dental student knowledge in other Brazilian regions

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population

    Get PDF
    Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following selection of benznidazole-resistant parasites, all clones examined had lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding. The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for future therapeutic strategies
    corecore