10 research outputs found

    A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae)

    Full text link
    The leafy spurges, Euphorbia subg. Esula, make up one of four main lineages in Euphorbia. The subgenus comprises about 480 species, most of which are annual or perennial herbs, but with a small number of dendroid shrubs and nearly leafless, pencilâ stemmed succulents as well. The subgenus constitutes the primary northern temperate radiation in Euphorbia. While the subgenus is most diverse from central Asia to the Mediterranean region, members of the group also occur in Africa, in the Indoâ Pacific region, and in the New World. We have assembled the largest worldwide sampling of the group to date (273 spp.), representing most of the taxonomic and geographic breadth of the subgenus. We performed phylogenetic analyses of sequence data from the nuclear ribosomal ITS and plastid ndhF regions. Our individual and combined analyses produced wellâ resolved phylogenies that confirm many of the previously recognized clades and also establish a number of novel groupings and placements of previously enigmatic species. Euphorbia subg. Esula has a clear Eurasian center of diversity, and we provide evidence for four independent arrivals to the New World and three separate colonizations of tropical and southern Africa. One of the latter groups further extends to Madagascar and New Zealand, and to more isolated islands such as Réunion and Samoa. Our results confirm that the dendroid shrub and stemâ succulent growth forms are derived conditions in E. subg. Esula. Stemâ succulents arose twice in the subgenus and dendroid shrubs three times. Based on the molecular phylogeny, we propose a new classification for E. subg. Esula that recognizes 21 sections (four of them newly described and two elevated from subsectional rank), and we place over 95% of the accepted species in the subgenus into this new classification.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146962/1/tax6221.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146962/2/tax6221-sup-004-pdf.pd

    Complete mitochondrial genomes of five subspecies of the Eurasian magpie Pica pica, obtained with Oxford Nanopore MinION, and their interpretation regarding intraspecific taxonomy

    No full text
    The complete mitochondrial (mt) genomes of five subspecies of the Eurasian (Common) magpie Pica pica were determined for the first time. Lengths of the circular genomes comprise 13 protein-coding genes, two rRNA genes (for 12S rRNA and 16S rRNA), 22 tRNA genes, and the non-coding control region (CR). Gene content and lengths of the genomes (16,936¿16,945 bp) are similar to typical vertebrate mt genomes. The subspecies studied differs by several single substitutions and indels, especially in the CR. The phylogenetic tree based on complete mt genomes shows a deep divergence of the two groups of subspecies which supports the proposed division into two distinct species: P. pica and P. serica.The study was partly supported by the Far East Basic Research Program of the Far Eastern Branch of the Russian Academy of Sciences, grant [No. 18-4-031]

    Development of a Control Algorithm for Three-Phase Inverter in Two-Phase Electric Drives Reducing the Number of Commutations

    No full text
    The paper was powered by research grant RFBR 19-48-480001Important requirements for the modern electric drives are the high overload capacity and a wide range of speed control. A two-phase adjustable low-power drive has these properties, but its implementation in small-scale mechanics is hindered by the need a frequency converter that provides a three-phase power grid into a two-phase network, which is important when the power of the mechanisms increases. Previous studies have already shown the possibility of using a typical frequency converter based on a three-phase full-bridge voltage inverter applying space-vector PWM method. The switching frequency of the inverter remains, unfortunately, relatively high. It is not possible to reduce this frequency without degrading the harmonic composition. The goal of this work is to develop an algorithm for controlling the two-phase electric drive system, while reducing the numberof commutations of the switching devices of the three-phase inverter, and at the same time keeping the deviations of the instantaneous values of the phase currents close enough to the reference.authorsversionpublishe

    Alterations in Properties of Glutamatergic Transmission in the Temporal Cortex and Hippocampus Following Pilocarpine-Induced Acute Seizures in Wistar Rats

    No full text
    Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE

    A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae)

    No full text
    The leafy spurges, Euphorbia subg. Esula, make up one of four main lineages in Euphorbia. The subgenus comprises about 480 species, most of which are annual or perennial herbs, but with a small number of dendroid shrubs and nearly leafless, pencil-stemmed succulents as well. The subgenus constitutes the primary northern temperate radiation in Euphorbia. While the subgenus is most diverse from central Asia to the Mediterranean region, members of the group also occur in Africa, in the Indo-Pacific region, and in the New World. We have assembled the largest worldwide sampling of the group to date (273 spp.), representing most of the taxonomic and geographic breadth of the subgenus. We performed phylogenetic analyses of sequence data from the nuclear ribosomal ITS and plastid ndhF regions. Our individual and combined analyses produced well-resolved phylogenies that confirm many of the previously recognized clades and also establish a number of novel groupings and placements of previously enigmatic species. Euphorbia subg. Esula has a clear Eurasian center of diversity, and we provide evidence for four independent arrivals to the New World and three separate colonizations of tropical and southern Africa. One of the latter groups further extends to Madagascar and New Zealand, and to more isolated islands such as Réunion and Samoa. Our results confirm that the dendroid shrub and stem-succulent growth forms are derived conditions in E. subg. Esula. Stem-succulents arose twice in the subgenus and dendroid shrubs three times. Based on the molecular phylogeny, we propose a new classification for E. subg. Esula that recognizes 21 sections (four of them newly described and two elevated from subsectional rank), and we place over 95% of the accepted species in the subgenus into this new classification.Funding was made available by the U.S. National Science Foundation through a Planetary Biodiversity Inventory Grant (DEB-0616533) to P.E. Berry, by the Spanish Ministry of Education and Science through project CGL2009-13322-C03-03 to L. Barres and J. Molero, and by the Russian Foundation for Basic Research through project 10-04-00290-а to D. Geltman and A. Kryukov.Peer reviewe
    corecore