670 research outputs found

    Possibility of Using a Geopolymer Containing Phase Change Materials as a Sprayed Insulating Coating - Preliminary Results

    Get PDF
    Geopolymers have been known for decades and classified as inorganic polymers, characterized by high resistance to high temperatures. They can be successfully used for the thermal insulation of buildings, especially in the foamed form. The addition of phase change materials (PCMs) in such materials may also increase the heat capacity of the materials, therefore, using them for building cladding can increase the thermal comfort of the building and prevent it from overheating. This study tests the addition of PCMs to geopolymers by spraying and presents the results. Additionally, the study includes preliminary experience concerning the technology of applying these materials, along with selected test results that assess the properties of the produced coatings. The results indicate that the addition of PCMs in the amount of 15% can increase the heat capacity of geopolymer materials by about 150-180%, and the foamed geopolymer coatings produced have a thermal conductivity in the range of 0.07-0.09 W/mK

    Impact of Flax Fiber Reinforcement on Mechanical Properties of Solid and Foamed Geopolymer Concrete

    Get PDF
    The main objective of this study is to develop the advanced composites for civil engineering applications as material for the building industry, especially for an insulation purpose. The research processes include several steps. Firstly, the prototype elements, such as bricks and elevation elements were performed from eco-friendly composite -flax fiber reinforced geopolymer. The elements were designed to take into consideration for environment. Geopolymers are environmentally friendly, sustainable, and resource efficient, including energy demand. Next, the wall was built from these elements and exposed during the three months in a relevant environment. The main conclusion of the research is that the kind of fibers is important for the mechanical properties of the composite, including the fact that for those different fibers could be more beneficial for different raw materials, giving higher strength properties. The significant influence on the mechanical properties of the composites has the adhesion between fiber and material used as a matrix. The adhesion depends among others on the previous treatment of the fibers

    Development of 3D Printing Technology for Geopolymers

    Get PDF
    The article presents the first results of the project under the title: ‘Development of 3D printing technology for construction and facade prefabricated elements made of concrete composites and geopolymers’, grant no. POIR.04.01.04-00-0096/18, funded by the National Centre for Research and Development in Poland, within the framework of programme: ‘Smart Growth Operational Programme 2014-2020, IV Increasing the research potential, 4.1.4: ‘Application projects’. The main aim of the project is design and development of the innovative large-format printer using geopolymers for 3D printing for residential houses. It allows the development of a technology for the production of a universal residential building, with a construction that is easy to transport and fast to assemble, as well as with the possibility of simple and quick expansion depending on the needs of users. The article shows the main idea of the advanced large format 3D printing for geopolymers with using an ergonomic printing method as well as materials research in modern filaments in the form of geopolymers

    Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes

    Get PDF
    Bisphenol A-glycidyl methacrylate (BisGMA) is monomer of dental filling composites, which can be released from these materials and cause adverse biologic effects in human cells. In the present work, we investigated genotoxic effect of BisGMA on human lymphocytes and human acute lymphoblastic leukemia cell line (CCRF-CEM) cells. Our results indicate that BisGMA is genotoxic for human lymphocytes. The compound induced DNA damage evaluated by the alkaline, neutral, and pH 12.1 version of the comet assay. This damage included oxidative modifications of the DNA bases, as checked by DNA repair enzymes EndoIII and Fpg, alkali-labile sites and DNA double-strand breaks. BisGMA induced DNA-strand breaks in the isolated plasmid. Lymphocytes incubated with BisGMA at 1 mM were able to remove about 50% of DNA damage during 120-min repair incubation. The monomer at 1 mM evoked a delay of the cell cycle in the S phase in CCRF-CEM cells. The experiment with spin trap—DMPO demonstrated that BisGMA induced reactive oxygen species, which were able to damage DNA. BisGMA is able to induce a broad spectrum of DNA damage including severe DNA double-strand breaks, which can be responsible for a delay of the cell cycle in the S phase

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore