99 research outputs found

    Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume

    Get PDF
    A new type of hierarchically porous carbon (HPC) structures of simultaneously high surface area and high pore volume has been synthesised from carefully controlled carbonization of in-house optimised metal–organic frameworks (MOFs). Changes in synthesis conditions lead to millimetre-sized MOF-5 crystals in a high yield. Subsequent carbonization of the MOFs yield HPCs with simultaneously high surface area, up to 2734 m2 g−1, and exceptionally high total pore volume, up to 5.53 cm3 g−1. In the HPCs, micropores are mostly retained and meso- and macro- pores are generated from defects in the individual crystals, which is made possible by structural inheritance from the MOF precursor. The resulting HPCs show a significant amount of CO2 adsorption, over 27 mmol g−1 (119 wt%) at 30 bar and 27 °C, which is one of the highest values reported in the literature for porous carbons. The findings are comparatively analysed with the literature. The results show great potential for the development of high capacity carbon-based sorbents for effective pre-combustion CO2 capture and other gas and energy storage applications

    Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.

    Get PDF
    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2) g(-1) ; to our knowledge, currently the highest published for Zr-based MOFs. CH4 /CO2 /H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g(-1) , which corresponds to 43 g L(-1) . The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 vSTP /v and 0.27 g g(-1) , respectively.OKF, JTH and RQS thank DOE ARPA-E and the Stanford Global Climate and Energy Project for support of work relevant to methane and CO2, respectively. TY acknowledges support by the U. S. Department of Energy through BES Grant No. DE-FG02-08ER46522. WB acknowledges support from the Foundation for Polish Science through the “Kolumb” Program. DFJ acknowledges the Royal Society (UK) for a University Research Fellowship. This material is based upon work supported by the National Science Foundation (grant CHE-1048773).This is the accepted manuscript. The final version is available as 'Water-Stable Zirconium-Based Metal–Organic Framework Material with High-Surface Area and Gas-Storage Capacities' from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/chem.201402895/abstract

    Use of the PIXEL method to investigate gas adsorption in metal–organic frameworks

    Get PDF
    PIXEL has been used to perform calculations of adsorbate-adsorbent interaction energies between a range of metal–organic frameworks (MOFs) and simple guest molecules. Interactions have been calculated for adsorption between MOF-5 and Ar, H(2), and N(2); Zn(2)(BDC)(2)(TED) (BDC = 1,4-benzenedicarboxylic acid, TED = triethylenediamine) and H(2); and HKUST-1 and CO(2). The locations of the adsorption sites and the calculated energies, which show differences in the Coulombic or dispersion characteristic of the interaction, compare favourably to experimental data and literature energy values calculated using density functional theory

    Hydrogen storage in metal-organic and covalent-organic frameworks by spillover

    Full text link
    Covalent-organic framework COF-1 and metal-organic frameworks HKUST-1 and MIL-101 were synthesized and studied for hydrogen storage at 77 and 298 K. Although MIL-101 had the largest surface area and pore volume among the three materials, HKUST-1 had the highest uptake (2.28 wt %) at 77 K. However, the H 2 storage capacity at 298 K and high pressure correlated with the surface area and pore volume. The H 2 storage in the COF and MOF materials assisted by hydrogen spillover, measured at 298 K up to a pressure of 10 MPa, have been examined for correlations with their structural and surface features for the first time. By using our simple technique to build carbon bridges, the hydrogen uptakes at 298 K were enhanced significantly by a factor of 2.6–3.2. The net uptake by spillover was correlated to the heat of adsorption through the Langmuir constant. Results on water vapor adsorption at 298 K indicated that COF-1 was unstable in moist air, while HKUST-1 and MIL-101 were stable. The results suggested that MIL-101 could be a promising material for hydrogen storage because of its high heat of adsorption for spiltover hydrogen, large surface area and pore volume, and stability upon H 2 O adsorption. © 2007 American Institute of Chemical Engineers AIChE J, 2008Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57505/1/11362_ftp.pd

    Porosity of closed carbon nanotubes compressed using hydraulic pressure

    Get PDF
    Experimental data of nitrogen adsorption (T = 77.3 K) from gaseous phase measured on commercial closed carbon nanotubes are presented. Additionally, we show the results of N2 adsorption on compressed (using hydraulic press) CNTs. In order to explain the experimental observations the results of GCMC simulations of N2 adsorption on isolated or bundled multi-walled closed nanotubes (four models of bundles) are discussed. We show that the changes of the experimental adsorption isotherms are related to the compression of the investigated adsorbents. They are qualitatively similar to the theoretical observations. Taking into account all results it is concluded that in the "architecture" of nanotubes very important role has been played by isolated nanotubes

    Characterization Of Nanoporous Materials Using Gas Adsorption Isotherms: Evaluating Their Potential For Gas Storage And Separation Applications

    No full text
    In order to find/design porous materials that could be used in practical applications involving adsorption, it is important to investigate the basic properties (i.e. isosteric heat, specific surface area, binding energy, pore size, pore volume, etc.) of each material. With this aim in mind we have looked at three different types of materials: single-walled carbon nanotubes (prepared by the HiPco and laser methods), single-walled nanohorns (dahlia-like and bud-like) and metal-organic frameworks (Cu-BTC and RPM-1). For these substrates we have measured volumetric adsorption isotherms using several gases such as neon, argon, tetrafluoromethane (CF4), xenon, and methane (not all gases for all substrates). Experimental adsorption isotherms were measured using methane, argon, xenon, and neon gases on unpurified single-walled carbon nanotubes prepared by the HiPco method. The main idea behind these experiments was to investigate, using different size gas molecules, the sites available for adsorption on this type of porous material. We found that surface area occupied by these adsorbates on the sample is the same, regardless of their size. This means that all the gases have access to the same group of adsorption sites. Since the biggest adsorbate in this experiment was Xe, and since it is unlikely that it could penetrate the interstitial channels in the nanotube bundles, we conclude that none of the gases, including the smallest one - Ne, are able to adsorb in the interstitial channels in bundles of single-walled carbon nanotubes. For the case of argon on laser produced single-walled carbon nanotubes we measured 21 adsorption isotherms using argon gas temperatures between 40 and 153 K that were used to determine the isosteric heat of adsorption for this system. Our experimental results were compared to the ones from computer simulations performed by J. K. Johnson (from the University of Pittsburgh) for the same gas on heterogeneous and homogenous bundles. It was observed that the isosteric heat data matches better with data computed for heterogeneous nanotube bundles. This indicates that at the lowest pressure and coverages argon might be adsorbing in the defect-induced interstitial channels. We studied Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3 (abbreviated as Cu-BTC) metal-organic framework with argon to determine the sites available for adsorption on this material. Volumetric adsorption isotherms were measured at temperatures between 66 and 143 K. We found two substeps in the isotherm data, indicating that there are two types of pores present in the material: tetrahedrally-shaped side pockets and the main channels. Our experimental results were compared with data from simulations conducted using the Grand Canonical Monte Carlo method. We determined that the theoretical results match reasonably well with ours if the coverage is scaled down by a factor of 1.6. We explored the potential of two different metal-organic framework materials (Cu-BTC and RPM-1) for gas separation application. We used argon and tetrafluoromethane (CF4) gases to check if this can be achieved through kinetic and steric mechanisms. We found that Cu-BTC has excellent potential in gas separation using a steric mechanism, since argon easily adsorbs into the small pores present in the sample, while CF4 is excluded from them. Adsorption properties of RPM-1 showed that it could be employed in gas separation using a kinetic mechanism - argon gas adsorbs and reaches equilibrium in the pores of the sample more than the order of magnitude faster than CF4. Closed-ended dahlia-like nanohorns were studied with neon and tetrafluoromethane gases. In the first layer of neon and tetrafluoromethane adsorbed on dahlia-like nanohorns we found two substeps. These results were compared with results of computer simulations performed by Prof. M. Calbi. We determined, after comparison with the simulation isotherms, that the lower pressure substeps correspond to adsorption of Ne and CF4 in the narrowest parts of interstitial channels of the aggregates. Surface area calculated from neon isotherms was found to be higher than the one obtained using CF4, meaning that the smaller Ne molecule has the access to the parts of the interstitial channels that are not accessible for the bigger CF4 molecule. Features that appeared in neon adsorption isotherms on bud-like nanohorn aggregates were quite different from the ones on dahlia-like aggregates. We measured neon adsorption isotherms on this type of sample at temperatures between 22 and 49 K. In the monolayer regime we observed one single substep whose origin we can not definitely identify, because the structure of the bud-like nanohorns is not well-known. The binding energy value that was calculated from the isotherm data was lower than the value for neon adsorbed in the grooves of nanotube bundles but higher than for neon on graphite

    Isosteric heat of argon adsorbed on single-walled carbon nanotubes prepared by laser ablation

    No full text
    We have measured 21 adsorption isotherms for argon on single-walled carbon nanotubes produced by laser ablation. We explored temperatures between 40 and 153 K to obtain the coverage dependence of the isosteric heat of adsorption for films in the first and second layers. Our data are compared to results obtained in computer simulation studies and to data obtained in previous experimental investigations of this system.Peer reviewed: YesNRC publication: Ye
    • 

    corecore