1,916 research outputs found

    Handling missing data by re-approaching non-respondents

    Get PDF
    When handling missing data, a researcher should be aware of the mechanism underlying the missingness. In the presence of non-randomly missing data, a model of the missing data mechanism should be included in the analyses to prevent the analyses based on the data from becoming biased. Modeling the missing data mechanism, however, is a difficult task. One way in which knowledge about the missing data mechanism may be obtained is by collecting additional data from non-respondents. In this paper the method of re-approaching respondents who did not answer all questions of a questionnaire is described. New answers were obtained from a sample of these non-respondents and the reason(s) for skipping questions was (were) probed for. The additional data resulted in a larger sample and was used to investigate the differences between respondents and non-respondents, whereas probing for the causes of missingness resulted in more knowledge about the nature of the missing data patterns

    The effect of renovation of long-term temperate grassland on N2O emissions and N leaching from contrasting soils

    Get PDF
    pre-printRenovation of long-term grassland is associated with a peak in soil organic N mineralisation which, coupled with diminished plant N uptake can lead to large gaseous and leaching N losses. This study reports on the effect of ploughing and subsequent N fertilisation on the N2O emissions and DON/NO3− leaching, and evaluates the impact of ploughing technique on the magnitude and profile of N losses. This study was carried out on isolated grassland lysimeters of three Irish soils representing contrasting drainage properties (well-drained Clonakilty, moderately-drained Elton and poorly-drained Rathangan). Lysimeters were manually ploughed simulating conventional (CT) and minimum tillage (MT) as two treatments. Renovation of grassland increased N2O flux to a maximum of 0.9 kg N2O–N ha− 1 from poorly-drained soil over four days after treatment. Although there was no difference between CT and MT in the post-ploughing period, the treatment influenced subsequent N2O after fertiliser applications. Fertilisation remained the major driver of N losses therefore reducing fertilisation rate post-planting to account for N mineralised through grassland renovation could reduce the losses in medium to longer term. Leaching was a significant loss pathway, with the cumulative drainage volume and N leached highly influenced by soil type. Overall, the total N losses (N2O + N leached) were lowest from poorly and moderately draining soil and highest for the well draining soil, reflecting the dominance of leaching on total N losses and the paramount importance of soil properties

    Work-related determinants of return to work of employees on long-term sickness absence

    Get PDF
    Purpose. The aim of the study is to identify work-related determinants of return to work (RTW) of employees who are on long-term sickness absence.Method. The study was based on a sample of 926 employees on sickness absence ( maximum duration of 12 weeks). The employees filled out a baseline questionnaire and were subsequently followed until the 10th month after listing sick. Cox proportional hazards regression analyses were used to identify determinants of RTW.Results. Working in one of the vocational sectors public administration, construction, financial and commercial services, transport, or education ( P = 0.00) and having low co-worker support ( P = 0.01) were related to longer duration to RTW in the mulitvariate model. Having low supervisor support ( P = 0.01) was associated with a higher RTW rate.Conclusions. Vocational sector is a strong predictor of RTW. Especially employees from the sector education are slow as to RTW. The observed association between low supervisor support and RTW was unexpected. However, the study confirms earlier research on the association between low co-worker support and RTW.</p

    Land, water and carbon footprints of circular bioenergy production systems

    Get PDF
    Renewable energy sources can help combat climate change but knowing the land, water and carbon implications of different renewable energy production mixes becomes a key. This paper systematically applies land, water and carbon footprint accounting methods to calculate resource appropriation and CO 2eq GHG emissions of two energy scenarios. The ‘100% scenario’ is meant as a thinking exercise and assumes a complete transition towards bioenergy, mostly as bioelectricity and some first-generation biofuel. The ‘SDS-bio scenario’ is inspired by IEA's sustainable development scenario and assumes a 9.8% share of bioenergy in the final mix, with a high share of first-generation biofuel. Energy inputs into production are calculated by differentiating inputs into fuel versus electricity and exclude fossil fuels used for non-energy purposes. Results suggest that both scenarios can lead to emission savings, but at a high cost of land and water resources. A 100% shift to bioenergy is not possible from water and land perspectives. The SDS-bio scenario, when using the most efficient feedstocks (sugar beet and sugarcane), would still require 11–14% of the global arable land and a water flow equivalent to 18–25% of the current water footprint of humanity. In comparative terms, using sugar or starchy crops to produce bioenergy results in smaller footprints than using oil-bearing crops. Regardless of the choice of crop, converting the biomass to combined heat and power results in smaller land, water and carbon footprints per unit of energy than when converting to electricity alone or liquid biofuel

    Correlation between Situational Awareness and EEG signals

    Get PDF
    An important aspect in safety–critical domains is Situational Awareness (SA) where operators consolidate data into an understanding of the situation that needs to be updated dynamically as the situation changes over time. Among existing measures of SA, only physiological measures can assess the cognitive processes associated with SA in real-time. Some studies showed promise in detecting cognitive states associated with SA in complex tasks using brain signals (e.g. electroencephalogram/EEG). In this paper, an analytical methodology is proposed to identify EEG signatures associated with SA on various regions of the brain. A new data set from 32 participants completing the SA test in the PEBL is collected using a 32-channel dry-EEG headset. The proposed method is tested on the new data set and a correlation is identified between the frequency bands of b (12 - 30 Hz) and c (30 - 45 Hz) and SA. Also, activation of neurons in the left and right hemisphere of the parietal and temporal lobe is observed. These regions are responsible for the visuo-spatial ability and memory and reasoning tasks. Among the presented results, the highest achieved accuracy on test data is 67%

    2s exciton-polariton revealed in an external magnetic field

    Full text link
    We demonstrate the existence of the excited state of an exciton-polariton in a semiconductor microcavity. The strong coupling of the quantum well heavy-hole exciton in an excited 2s state to the cavity photon is observed in non-zero magnetic field due to surprisingly fast increase of Rabi energy of the 2s exciton-polariton in magnetic field. This effect is explained by a strong modification of the wave-function of the relative electron-hole motion for the 2s exciton state.Comment: 5 pages, 5 figure

    On the use of mass-conserving wind fields in chemistry-transport models

    Get PDF
    A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity) by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing ÎŽD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors

    Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010

    Get PDF
    This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can create biases in column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and CO2 (Xratio) have been used. We apply the ratio inversion method described in Pandey et al. (2015) to retrievals from the Greenhouse Gases Observing SATellite (GOSAT). The ratio inversion method uses the measured Xratio as a weak constraint on CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005) prescribes atmospheric CO2 fields and optimizes only CH4 fluxes. The TM5–4DVAR (Tracer Transport Model version 5–variational data assimilation system) inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy inversions using model-derived CO2 mixing ratios (XCO2model) from CarbonTracker and the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis CO2 product. The performance of the inverse models is evaluated using measurements from three aircraft measurement projects. Xratio and XCO2model are compared with TCCON retrievals to quantify the relative importance of errors in these components of the proxy XCH4 retrieval (XCH4proxy). We find that the retrieval errors in Xratio (mean  =  0.61 %) are generally larger than the errors in XCO2model (mean  =  0.24 and 0.01 % for CarbonTracker and MACC, respectively). On the annual timescale, the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in XCO2model do not limit the overall accuracy of the CH4 flux estimates. On the seasonal timescale, however, larger differences are found due to uncertainties in XCO2model, particularly over Australia and in the tropics. The ratio method stays closer to the a priori CH4 flux in these regions, because it is capable of simultaneously adjusting the CO2 fluxes. Over tropical South America, comparison to independent measurements shows that CO2 fields derived from the ratio method are less realistic than those used in the proxy method. However, the CH4 fluxes are more realistic, because the impact of unaccounted systematic uncertainties is more evenly distributed between CO2 and CH4. The ratio inversion estimates an enhanced CO2 release from tropical South America during the dry season of 2010, which is in accordance with the findings of Gatti et al. (2014) and Van der Laan et al. (2015). The performance of the ratio method is encouraging, because despite the added nonlinearity due to the assimilation of Xratio and the significant increase in the degree of freedom by optimizing CO2 fluxes, still consistent results are obtained with respect to other CH4 inversions
    • 

    corecore