10 research outputs found

    Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests

    Get PDF
    Carbon dioxide (CO2) and methane (CH4) are recognized as the main greenhouse gases causing climate warming. In forest ecosystems, the death of trees leads to the formation of coarse woody debris (CWD) that is one of the sources of greenhouse gas emissions due to wood decomposi-tion. We quantified the CO2 and CH4 fluxes from CWD of larch (Larix gmelinii (Rupr.)) and birch (Betula tortuosa Ledeb.) collected in the northern boreal forests of Central Siberia. The CWD samples were incubated at +5, +15 and +25◦ C. The CO2 and CH4 fluxes showed strong correlations with temperature, moisture, decomposition stage and the type of wood’s rot. The temperature coefficient Q10 indicated higher temperature sensitivity of CO2 flux within the temperature interval from +5 to +15◦ C than from +15 to +25◦ C. Methane flux had higher temperature sensitivity within the interval from +15 to +25◦ C. It was found that, in boreal forests, CWD of early decay stage can serve as a source of methane to the atmosphere when air temperatures increased above +15◦ C. Strong positive correlation between CH4 production and CO2 emission indicated a biological source and supported findings on aerobic origin of the main process contributing to the CH4 flux from decomposing CWD

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests

    No full text
    Carbon dioxide (CO2) and methane (CH4) are recognized as the main greenhouse gases causing climate warming. In forest ecosystems, the death of trees leads to the formation of coarse woody debris (CWD) that is one of the sources of greenhouse gas emissions due to wood decomposition. We quantified the CO2 and CH4 fluxes from CWD of larch (Larix gmelinii (Rupr.)) and birch (Betula tortuosa Ledeb.) collected in the northern boreal forests of Central Siberia. The CWD samples were incubated at +5, +15 and +25 °C. The CO2 and CH4 fluxes showed strong correlations with temperature, moisture, decomposition stage and the type of wood’s rot. The temperature coefficient Q10 indicated higher temperature sensitivity of CO2 flux within the temperature interval from +5 to +15 °C than from +15 to +25 °C. Methane flux had higher temperature sensitivity within the interval from +15 to +25 °C. It was found that, in boreal forests, CWD of early decay stage can serve as a source of methane to the atmosphere when air temperatures increased above +15 °C. Strong positive correlation between CH4 production and CO2 emission indicated a biological source and supported findings on aerobic origin of the main process contributing to the CH4 flux from decomposing CWD

    Typological diversity and ecological features of the middle taiga forests of Central Siberia

    No full text
    The main types of forest plant communities in the southern part of the Central Siberian Plateau (the lower reaches of the Podkamennaya Tunguska River Basin) were separated. Basic ecological gradients crucial for formation and functioning of these types of plant communities were identified using the methods of ordination

    Specifisity of phytocoenotic structure and biomass of ground cover in northern boreal forests of Middle Siberia

    Get PDF
    We measured biomass of living ground cover and analyzed specificity of carbon accumulation in the litter in different types of larch forests in northern boreal subzone of Middle Siberia

    Diversity of the vegetation cover of the zone of potential influence of the Nizhneboguchanskaya HPP (Lower Angara region)

    No full text
    Active economic development of the Lower Angara zone requires the creation of a scientific basis for long-term monitoring of the state of natural ecosystems. The paper gives an assessment of the diversity of vegetation cover in the zone of potential influence of the Nizhneboguchanskaya HPP. An analysis of its typological structure on a landscape-ecological basis is given. The results of the DCA ordination and the interpretation of the leading axes of variation demonstrated the presence of four distinct groups of forest types that form ecological series according to the leading factors - the richness and hydrothermal regimes of soils. The dendrogram of forest types in the study area reflects the floristic integrity of the identified groups of forest types and the floristic relationships between them

    Larch response to warming in northern Siberia

    No full text
    The dendroecology of larch (Larix gmelinii Rupr.) in the world’s northernmost forest provided insight into the complex relationship of tree growth, forest stand establishment, and changing eco-climatic factors. The Ary-Mas forest in the northern Siberia (72° + NL) is an ecological island, surrounded by tundra. We hypothesized that the environmental constraints that limit larch growth in this harsh habitat include soil moisture and winter winds as well as low air temperature. We constructed and analyzed the larch growth index (GI) chronology from the eighteenth century until 2019. We found that the larch GI depended on the air temperature, soil moisture anomalies, and winter wind speed, and that dependence was significantly different before and after the 2000s. Larch GI responded to the onset of climatic warming in the 1970s by a minor GI increase followed by a GI decrease until the end of 1990. Increased air temperature early in the growing season favored increased GI, whereas elevated winter wind speed negatively influenced larch growth. After warming in the 2000s, the length of the growing season increased by 15 days, and larch GI was sensitive to air temperature both early and late in the growing season. The adverse influence of winter winds has gradually decreased since the 1970s, becoming a minor factor in the 2000s. Soil moisture in “wet, cold soils” negatively influenced larch growth. Meanwhile, decreased soil moisture in the northern lowlands favored increased larch growth. We found that larch growth increases were strongly correlated with GPP and NPP (gross and net primary productivity) within the Ary-Mas site and for the central Siberian Arctic. We infer that this Arctic region continues to be a carbon sink

    Global forest management data for 2015 at a 100 m resolution

    No full text
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    No full text
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS- based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.</p
    corecore