46 research outputs found

    Roles of the Nuclear Lamina in Stable Nuclear Association and Assembly of a Herpesviral Transactivator Complex on Viral Immediate-Early Genes

    Get PDF
    Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C−/− cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C−/− mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex

    Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Sydney blood bank cohort (SBBC) of long-term survivors consists of multiple individuals infected with attenuated, <it>nef</it>-deleted variants of human immunodeficiency virus type 1 (HIV-1) acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP) as well as long-term nonprogressors (LTNP). Convergent evolution of <it>nef </it>sequences in SBBC SP and LTNP indicates the <it>in vivo </it>pathogenicity of HIV-1 in SBBC members is dictated by factors other than <it>nef</it>. To better understand mechanisms underlying the pathogenicity of <it>nef</it>-deleted HIV-1, we examined the phenotype and <it>env </it>sequence diversity of sequentially isolated viruses (n = 2) from 3 SBBC members.</p> <p>Results</p> <p>The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively) and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18). Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC). In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of <it>env </it>by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient <it>env </it>evolution.</p> <p>Conclusion</p> <p>Independent evolution of <it>env </it>despite convergent evolution of <it>nef </it>may contribute to the <it>in vivo </it>pathogenicity of <it>nef</it>-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.</p

    Vitamin D deficiency associates with susceptibility to tuberculosis in Pakistan, but polymorphisms in VDR, DBP and CYP2R1 do not

    Get PDF
    Background: Single nucleotide polymorphisms (SNPs) in the genes encoding the vitamin D receptor (VDR) and the vitamin D binding protein (DBP) have been reported to modify the influence of vitamin D deficiency on susceptibility to active tuberculosis (TB) in the UK, but this phenomenon has not been investigated in settings with a high TB burden. SNPs in CYP2R1, which encodes a vitamin D 25-hydroxylase enzyme, are known to influence vitamin D status, but their potential role in determining susceptibility to TB has not previously been investigated in any setting. Method: We conducted a case–control study in 260 pulmonary TB patients and 112 controls recruited in Lahore, Pakistan. Analyses were conducted to test for main effects of vitamin D status and SNPs in VDR (rs731236, rs2228570 and rs1544410), DBP (rs7041 and rs4588) and CYP2R1 (rs2060793, rs10500804 and rs10766197) on susceptibility to TB, and to investigate whether these SNPs modify the association between vitamin D status and disease susceptibility. Results: Profound vitamin D deficiency (serum 25-hydroxyvitamin D concentration ≀ 20 nmol/L) was common among TB patients (118/260, 45 %), and was independently associated with susceptibility to TB (adjusted odds ratio 1.87, 95 % CI 1.15 to 3.04, P = 0.01). However, none of the SNPs investigated associated with susceptibility to TB, either in main effects analysis, or in interaction with vitamin D status. Conclusion: Profound vitamin D deficiency was common among TB patients in this high-burden setting, and was independently associated with disease susceptibility. However, no statistically significant associations between SNPs in the vitamin D pathway and disease susceptibility was demonstrated.Higher Education Commission of Pakistan grant number BM7-139

    An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals: Building Evidence to Support the Utility of In Vitro and In Silico Methods in a Regulatory Context

    Get PDF
    Sensitization of the respiratory tract is an important occupational health challenge, and understanding the mechanistic basis of this effect is necessary to support the development of toxicological tools to detect chemicals that may cause it. Here we use the adverse outcome pathway (AOP) framework to organize information that may better inform our understanding of sensitization of the respiratory tract, building on a previously published skin sensitization AOP, relying on literature evidence linked to low-molecular-weight organic chemicals and excluding other known respiratory sensitizers acting via different molecular initiating events. The established key events (KEs) are as follows: (1) covalent binding of chemicals to proteins, (2) activation of cellular danger signals (inflammatory cytokines and chemokines and cytoprotective gene pathways), (3) dendritic cell activation and migration, (4) activation, proliferation, and polarization of T cells, and (5) sensitization of the respiratory tract. These events mirror the skin sensitization AOP but with specific differences. For example, there is some evidence that respiratory sensitizers bind preferentially to lysine moieties, whereas skin sensitizers bind to both cysteine and lysine. Furthermore, exposure to respiratory sensitizers seems to result in cell behavior for KEs 2 and 3, as well as the effector T cell response, in general skewing toward cytokine secretions predominantly associated with T helper 2 (Th2) response. Knowledge gaps include the lack of understanding of which KE(s) drive the Th2 polarization. The construction of this AOP may provide insight into predictive tests that would in combination support the discrimination of respiratory-sensitizing from non- and skin-sensitizing chemicals, a clear regulatory need

    Factors Modulating COVID-19 : A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework

    Get PDF
    Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.publishedVersionPeer reviewe

    Evidence-based mental health law : the case for legislative change to allow earlier intervention in psychotic illness

    No full text
    Psychosis is a relatively common and severe mental disorder that results in impaired judgment and reasoning and is associated with an increased incidence of violence in the period before the initiation of treatment. Studies published since the Mental Health Act 1990 (New South Wales) was enacted have shown that the period before the emergence of acute symptoms (the prodrome) and first episode of illness carries a greatly increased risk of violence. It is also established that the longer-term prognosis is improved by early initiation of treatment. We believe the New South Wales Mental Health Act should be amended to reflect the scientific evidence of an increased risk of violence in the early stage of illness and the harm arising from delaying treatment. Emerging psychosis should be regarded as a medical emergency and the threshold for compulsory treatment for people in the early phase of psychotic illness should be lower

    Evidence based mental health law: The case for legislative change to allow earlier intervention in psychotic illness

    No full text
    Psychosis is a relatively common and severe mental disorder that results in impaired judgment and reasoning and is associated with an increased incidence of violence in the period before the initiation of treatment. Studies published since the Mental Health Act 1990 (New South Wales) was enacted have shown that the period before the emergence of acute symptoms (the prodrome) and first episode of illness carries a greatly increased risk of violence. It is also established that the longer-term prognosis is improved by early initiation of treatment. We believe the New South Wales Mental Health Act should be amended to reflect the scientific evidence of an increased risk of violence in the early stage of illness and the harm arising from delaying treatment. Emerging psychosis should be regarded as a medical emergency and the threshold for compulsory treatment for people in the early phase of psychotic illness should be lower
    corecore