11 research outputs found

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    Neural PLDA Modeling for End-to-End Speaker Verification

    Full text link
    While deep learning models have made significant advances in supervised classification problems, the application of these models for out-of-set verification tasks like speaker recognition has been limited to deriving feature embeddings. The state-of-the-art x-vector PLDA based speaker verification systems use a generative model based on probabilistic linear discriminant analysis (PLDA) for computing the verification score. Recently, we had proposed a neural network approach for backend modeling in speaker verification called the neural PLDA (NPLDA) where the likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. In this paper, we extend this work to achieve joint optimization of the embedding neural network (x-vector network) with the NPLDA network in an end-to-end (E2E) fashion. This proposed end-to-end model is optimized directly from the acoustic features with a verification cost function and during testing, the model directly outputs the likelihood ratio score. With various experiments using the NIST speaker recognition evaluation (SRE) 2018 and 2019 datasets, we show that the proposed E2E model improves significantly over the x-vector PLDA baseline speaker verification system.Comment: Accepted in Interspeech 2020. GitHub Implementation Repos: https://github.com/iiscleap/E2E-NPLDA and https://github.com/iiscleap/NeuralPld

    Coswara -- A Database of Breathing, Cough, and Voice Sounds for COVID-19 Diagnosis

    Full text link
    The COVID-19 pandemic presents global challenges transcending boundaries of country, race, religion, and economy. The current gold standard method for COVID-19 detection is the reverse transcription polymerase chain reaction (RT-PCR) testing. However, this method is expensive, time-consuming, and violates social distancing. Also, as the pandemic is expected to stay for a while, there is a need for an alternate diagnosis tool which overcomes these limitations, and is deployable at a large scale. The prominent symptoms of COVID-19 include cough and breathing difficulties. We foresee that respiratory sounds, when analyzed using machine learning techniques, can provide useful insights, enabling the design of a diagnostic tool. Towards this, the paper presents an early effort in creating (and analyzing) a database, called Coswara, of respiratory sounds, namely, cough, breath, and voice. The sound samples are collected via worldwide crowdsourcing using a website application. The curated dataset is released as open access. As the pandemic is evolving, the data collection and analysis is a work in progress. We believe that insights from analysis of Coswara can be effective in enabling sound based technology solutions for point-of-care diagnosis of respiratory infection, and in the near future this can help to diagnose COVID-19.Comment: A description of Coswara dataset to evaluate COVID-19 diagnosis using respiratory sound

    Epistatic and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon

    Get PDF
    SummaryUnderstanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies [1–6], but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution [7]
    corecore