869 research outputs found

    Structure based de novo design of IspD inhibitors as anti-tubercular agents

    Get PDF
    Tuberculosis is one of the leading contagious diseases, caused by Mycobacterium tuberculosis. Despite improvements in anti-tubercular agents, it remains one of the most prevalent infectious diseases worldwide, responsible for a total of 1.6 million deaths annually. The emergence of multidrug resistant strains highlighted the need of discovering novel drug targets for the development of anti-tubercular agents. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an enzyme involved in MEP pathway for isoprenoid biosynthesis, which is considered an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. In the present study, we have employed structure based drug design approach to develop novel and potent inhibitors for IspD receptor. To explore binding affinity and hydrogen bond interaction between the ligand and active site of IspD receptor, docking studies were performed. ADMET and synthetic accessibility filters were used to screen designed molecules. Finally, ten compounds were selected and subsequently submitted for the synthesis and in vitro studies as IspD inhibitors

    The 2nd 3D Face Alignment In The Wild Challenge (3DFAW-video): Dense Reconstruction From Video

    Get PDF
    3D face alignment approaches have strong advantages over 2D with respect to representational power and robustness to illumination and pose. Over the past few years, a number of research groups have made rapid advances in dense 3D alignment from 2D video and obtained impressive results. How these various methods compare is relatively unknown. Previous benchmarks addressed sparse 3D alignment and single image 3D reconstruction. No commonly accepted evaluation protocol exists for dense 3D face reconstruction from video with which to compare them. The 2nd 3D Face Alignment in the Wild from Videos (3DFAW-Video) Challenge extends the previous 3DFAW 2016 competition to the estimation of dense 3D facial structure from video. It presented a new large corpora of profile-to-profile face videos recorded under different imaging conditions and annotated with corresponding high-resolution 3D ground truth meshes. In this paper we outline the evaluation protocol, the data used, and the results. 3DFAW-Video is to be held in conjunction with the 2019 International Conference on Computer Vision, in Seoul, Korea

    Positive impacts of integrating flaxseed meal as a potential feed supplement in livestock and poultry production: Present scientific understanding

    Get PDF
    When it comes to food and fiber production, flaxseed (Linum usitatissimum) has been around the longest. Oil makes up over 41% of a flaxseed's total weight; of that, more than 70% is polyunsaturated. Protein, dietary fiber, α-linolenic acid (ALA), flaxseed gum, and many other beneficial compounds are abundant in flaxseed meal (FSM). There is as much as 30% crude protein in FSM. Therefore, FSM can serve as a source of excellent protein for livestock. FSM increases the efficiency and effectiveness of livestock and poultry farming. FSM can be used as an essential protein feed component in cattle and poultry farming, boosting production and profitability. Because it contains anti-nutritional ingredients such as cyanogenic glycosides, tannins, phytic acid, oxalic acid and an anti-vitamin B6 factor, the use of FSM in livestock and poultry diets is restricted. Animal nutritionists have recently shown a growing interest in reducing anti-nutritional elements and boosting FSM's nutritional value. Recently, fermented FSM has been used to feed cattle and poultry; hence its dietary benefits have not yet been fully assessed. The present article, therefore, addresses the chemical make-up, bioactive components, anti-nutritional aspects, and positive impacts of FSM in livestock and poultry production

    Cinnamon as a Potential Feed Additive: Beneficial Effects on Poultry Health and Production Performances – An Update

    Get PDF
    According to the Food and Agricultural Organization, global poultry output increased from approximately 115 million tons in 2016 to around 136 million tons in 2023. Poultry production has increased significantly with the dramatic uptick in meat and egg demand. Feed accounts for between 65 and 70 percent of total production costs, making it the largest chicken industry expense. This is why it's important to maximize the transformation of poultry feed into feed with a high biological value while taking as many steps as possible to protect feed quality and reduce feed costs. The use of feed additives in poultry feed has recently gained popularity and has been essential to increase feed efficiency and growth rate, which typically leads to reduced costs. The meat's texture, consistency, and nutritional content are all improved, and its shelf life is lengthened as a bonus. Feed additives are a fantastic tool for boosting a poultry farm's bottom line. For example, cinnamon (Cinnamomum verum) is often used as a traditional feed supplement. Rather than antibiotics, the poultry industry could benefit from using cinnamon as a natural antibiotic replacement, which would benefit animal welfare, consumer health, and the bottom line. The performance index, feed intake, FCE performance, and weight growth of poultry can all be improved by including cinnamon in the feed at varied concentrations. The digestive health and intestinal microbial population of hens are enhanced by a diet containing bioactive components of cinnamon. Cinnamon essential oils' popularity stems from their many valuable features, such as their ability to increase gastric enzyme synthesis and other biofunctional benefits. This review focuses on the possible advantages of cinnamon as a natural feed supplement for chickens, particularly about their intestinal microbiota, blood chemistry, nutrient absorption, gene expression, and immunology

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV

    Get PDF
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe
    corecore