
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Oct 2019 

The 2nd 3D Face Alignment In The Wild Challenge (3DFAW-video): The 2nd 3D Face Alignment In The Wild Challenge (3DFAW-video): 

Dense Reconstruction From Video Dense Reconstruction From Video 

Rohith Krishnan Pillai 

Laszlo Attila Jeni 

Huiyuan Yang 
Missouri University of Science and Technology, hyang@mst.edu 

Zheng Zhang 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/1375 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
R. K. Pillai et al., "The 2nd 3D Face Alignment In The Wild Challenge (3DFAW-video): Dense Reconstruction 
From Video," Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 
pp. 3082 - 3089, article no. 9022602, Institute of Electrical and Electronics Engineers, Oct 2019. 
The definitive version is available at https://doi.org/10.1109/ICCVW.2019.00371 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/1375
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICCVW.2019.00371
mailto:scholarsmine@mst.edu


The 2nd 3D Face Alignment in the Wild Challenge (3DFAW-Video):
Dense Reconstruction From Video

Rohith Krishnan Pillai
Robotics Institute

Carnegie Mellon University
rohithkp@cmu.edu
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Abstract

3D face alignment approaches have strong advantages
over 2D with respect to representational power and robust-
ness to illumination and pose. Over the past few years a
number of research groups have made rapid advances in
dense 3D alignment from 2D video and obtained impres-
sive results. How these various methods compare is rela-
tively unknown. Previous benchmarks addressed sparse 3D
alignment and single image 3D reconstruction. No com-
monly accepted evaluation protocol exists for dense 3D face
reconstruction from video with which to compare them. The
2nd 3D Face Alignment in the Wild from Videos (3DFAW-
Video) Challenge extends the previous 3DFAW 2016 com-
petition to the estimation of dense 3D facial structure from
video. It presented a new large corpora of profile-to-profile
face videos recorded under different imaging conditions and
annotated with corresponding high-resolution 3D ground
truth meshes. In this paper we outline the evaluation pro-
tocol, the data used, and the results. 3DFAW-Video is to be
held in conjunction with the 2019 International Conference
on Computer Vision, in Seoul, Korea.

1. Introduction

Performance of face alignment - the task of estimating

detailed facial structure - has been improving steadily in the

last decade, moving away from localizing a sparse set of 2D

landmarks to estimating a dense 3D structure of the face.

Today, 3D face alignment technology serves many appli-

cations, from building personalized face rigs for animation

to understanding nonverbal communication in real world

conditions.

Previous datasets used for 3D face alignment research in-

clude multi-view 2D images annotated with sparse set of 2D

landmarks (eg. Multi-PIE [9], CelebA[16], and AFLW[19])

and static 3D face scans accompanied with texture (eg.

Bosphorus[21], BU3D[28], Stirling ESRC1).

3D face alignment from 2D video has been less stud-

ied than their single image based counterparts. Recent

datasets, such as NoW[20], and MICC Florence [1], pro-

vide 2D video accompanied with 3D head scans for each

subject including expressions. Many recent methods such

as PRNet[5], 3DMM-CNN[25], MMFace[27] and Nonlin-

ear 3DMM[24] use sparse 3D alignment and conduct single

image 3D reconstruction. Such methods are popular due to

availability of the large amounts of single image dataset, as

opposed to video dataset built for such a task.

The majority of single image methods use a variant of 3D

Morphable Model (3DMM) based fitting for 3D reconstruc-

tion including models such as Basel face model[8], Face-

warehouse blendshapes[2], or FLAME[15].

Recently, differential renders have been used to train

end-to-end deep learning based systems for 3D reconstruc-

tion, like in Mofa[23] and in GAN-FIT[7]. In contrast,

multi-view or video based methods for 3D face reconstruc-

tion are less common. MVF-Net[26] introduced a method

that takes multiple views of the subject to regress 3DMM

parameters using an end to end CNN and minimizing a

view-alignment loss. Similarly, [4] uses the complementary

information from different images for shape aggregation to

perform multi-image face reconstruction.

These multi-image based methods present good results

for 3D face reconstruction, but how they compare to each

other is relatively unknown. No commonly accepted evalu-

1http://pics.stir.ac.uk/

3082

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)

2473-9944/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCVW.2019.00371

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 31,2023 at 19:33:54 UTC from IEEE Xplore.  Restrictions apply. 



Workshop/Challenge Modality Datasets Ground Truth

1st Workshop on 3D Face Alignment in

the Wild (3DFAW) Challenge[11]

Single image, video BP-4D-Spontaneous[32],

BP-4DFE[31],Multi-PIE

[9], Time-sliced[11]

3D sparse mesh

(Di3D, Strutcture-

from-motion)

1st 3D Face Tracking in-the-wild

Competition[29]

Single image, video 300W dataset[18], 3D

Menpo database[30]

3D sparse mesh (De-

formable model fit-

ting)

Workshop on Dense 3D Reconstruction

from 2D Face Images in the Wild[6]

Single image Stirling ESRC1 , JNU 3D

face dataset[14]

3D dense mesh

(Di3D, 3dMDface)

NoW challenge[20] Single image ”not quite in-the-wild”

(NoW dataset) [20]

3D dense mesh

(3dMDface)

2nd 3D Face Alignment in the Wild

Challenge (3DFAW-Video)2
Multiple images, video 3DFAW-Video 3D dense mesh

(Di3D)

Table 1. A summary and comparison of some of the challenges and workshops related to 3D face reconstruction in recent years.

ation protocol exists for dense 3D face reconstruction from

video with which to compare them.

To enable comparisons, this paper introduces the 2nd 3D

Face Alignment in the Wild (3DFAW-Video) benchmark.

We created an annotated corpus of profile-to-profile videos

obtained under a range of conditions: (i) high-definition in-

the-lab video, (ii) unconstrained in-the-wild video from an

iPhone device, and (iii) high-resolution 3D face scans from

a Di3D imaging system. We also introduce a novel symmet-

ric evaluation metric than the traditional 3D-RMSE scores

to compare the various 3D reconstructions on the 3DFAW-

Video dataset.

1.1. Previous related benchmarks

There have been a few prior workshops and competi-

tions related to 3D face reconstruction in the recent past,

Table 1 summarizes the most relevant ones. Some of the

early challenges related to 3D face reconstruction consisted

of the task of 3D face alignment from 2D video or even

single image examples. The 1st Workshop on 3D Face

Alignment in the Wild (3DFAW) Challenge[11] used the

BP-4D-Spontaneous[32], BP-4DFE[31],Multi-PIE [9], and

Time-sliced[11] datasets to provide the images and their re-

spective 3D landmarks as ground truths, provided by an

automatic algorithm. Similarly, 1st 3D Face Tracking in-

the-wild Competition[29] also provided data from 300W

dataset[18] and 3D Menpo database[30], focusing on the

tracking of the 3D facial landmarks. They also used an au-

tomatic fitting algorithm to provide the ground truths for the

data, like [11]. Since these competitions did not use real 3D

scans for their ground truth, as [6] pointed out, these are not

ideal for use in bench-marking, due to the limitations of the

algorithms providing the ground truth making any learned

technique at most as good as the ground truth algorithm.

Recent challenges such as the Workshop on Dense 3D

Reconstruction from 2D Face Images in the Wild[6] miti-

gate this by using 3D dense mesh ground truths in the chal-

lenges to evaluate the various methods. This allows for very

direct comparison of the accuracy of methods against the

best estimate of the face shape of individuals. However, [6]

did not provide any annotated 3D mesh ground truth dataset

for training and allowed the use of any outside datasets,

while using Stirling ESRC1 and JNU 3D face dataset[14]

containing 3D mesh ground truths only for the testing and

validation phases respectively. The NoW challenge[20] in-

troduced a new standard evaluation metric to the accuracy

of the 3D reconstruction from single monocular images.

Similar to previous challenges, the NoW challenge pro-

vided data in the form of images, and also improved on

them by providing the 3D ground truth scans as a part of

the ”not quite in-the-wild” (NoW dataset) [20].

The 2nd 3D Face Alignment in the Wild (3DFAW-Video)

Challenge2 improves on the earlier 3DFAW challenge[11]

by providing 3D dense mesh scans as the ground truth for

quantifiable evaluation on the accuracy of differing meth-

ods in 3D reconstruction. Furthermore, unlike [6] and [20]

we provide the 3D ground truth scans as well as their facial

landmarks for the frontal images in the video for not only

the testing and/or validation phases of the challenge but also

for the training fold of the 3DFAW-Video dataset. More-

over, while most related datasets and challenges limit itself

to just the single image modality, 3DFAW-Video provides

video data for the reconstruction of the face. This allows

for both multi-view and existing single image methods to

be evaluated together on the same dataset and to be com-

pared against the 3D dense mesh ground truth. Although,

unlike the use of single images which can be in large num-

bers, datasets such as 3DFAW-Video that provide paired 3D

facial scans and videos, tend to have smaller dataset sizes as

a single video is recorded per subject compared to multiple

images in an image based dataset. Nonetheless, the video

data provided is richer in information given that the data in-

herently exposes multiple angles of the face allowing more

2http://3dfaw.github.io
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information to be extracted regarding the 3D shape of the

subject versus a single view image.

2. 3DFAW-Video Dataset
The 3DFAW-Video Dataset contains 3 different compo-

nents for each of the 66 different subjects:

1. A high resolution 2D video from a DI3D system

2. Unconstrained 2D video from an iPhone

3. Hi-resolution 3D ground truth mesh

For both the high resolution 2D videos from DI3D 3D

imaging system and the lower resolution 2D video from the

iPhone 6 camera, the video captures an arc around the sub-

ject from profile-to-profile. The third component, the 3D

reconstructed ground truth meshes for each of the subjects

were created by merging multiple meshes from the DI3D

3D imaging system. Details of the data collection and 3D

reconstruction of the ground truth meshes are described in

greater details in the following subsections.

2.1. Data Acquisition

The DI3D 3D imaging system video was captured along

with the corresponding 3D meshes in a controlled environ-

ment with 2 symmetric lights against a static dark back-

ground. The system consists of a RGB 2D color camera ver-

tically flanked by a 3D sensor composed of a pair of stereo

monochrome cameras. Dense passive stereo photogramme-

try method is used to recover the 3D model for each frame,

containing about 30k-50k vertices, and at a precision of

0.2mm RMS. The frame rate was set to 25fps, and each of

the 2D texture images has a resolution of 1040x1392 pixels.

The DI3D imaging system was fixed in place while the sub-

jects were asked to sit in front of cameras and then slowly

rotate their heads from left profile to right profile to capture

a 5 ∼ 10s 3D sequence and the respective video.

The iPhone 6 video on the other hand was captured by a

hand-held iPhone 6 in a much more ’in-the-wild’ environ-

ment, although still indoors with ambient indoor lighting.

Therefore, the iPhone 6 data provides more varied data, as

it includes the subjects not being totally centered in various

frames, and contains shaking that is characteristic of hand-

held mobile video capture. Figure 1 shows the example of

a video data from both the high resolution and the iPhone

cameras provided.

The following subsections describe the procedure fol-

lowed for the reconstruction of the ground truth meshes that

provide the dense 3D reconstructions for each of the 66 sub-

jects. The total n=66 subjects, were of the ages 18 to 28 with

an average age of 19.74 and standard deviation of 2.3. The

subjects are also racially and ethnically diverse as shown in

Table 2, and also roughly balanced with respect to gender,

with 36 females and 30 males. The subjects gave informed

consent for the distribution and use of their video images

for non-commercial research.

Figure 1. The montage shows selected frames of the profile to pro-

file videos of one of the subjects, with the iPhone video on the top

row, the high resolution video from the DI3D system on the mid-

dle row, and a few angles of the ground truth mesh on the bottom

row.

Ethnicity No. of Subjects

African American 1

Asian 20

Latino/Hispanic 7

White 35

Others 3

Table 2. The ethnic/racial distribution of the subjects in the

3DFAW-Video dataset.

2.2. Ground Truth Reconstruction

The data collected from using the DI3D system is in the

form of a sequence of individual 3D meshes of roughly

20,000 vertices and 35-40k faces, covering a part of the

face of the person. Each of the meshes are specified in the

wave-front object format, with a corresponding image that

is used for mapping the texture on to the mesh. Each of the

mesh sequences contains approximately 130 meshes cap-

turing the face from a front view of the face then panning

to both the left and right profile views of the face and then

back to the front view.

In order to reconstruct the ground truth 3D face scan

from the multiple meshes that are included in a sequence,

each of the sequence meshes are first cleaned manually us-
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ing MeshLab [3], by deleting vertices and faces from the

mesh at areas that have inaccurate projections. This is typi-

cally seen around the corners of a mesh where the occlusion

or rapid change in depth lead to elongated projections of the

mesh vertices. The ears, nose and neck are especially prone

to casting wrongly projected vertices at their corners when

the feature ends or occludes the points behind it. Care is

taken to clean in order to minimize the number of wrongly

projected vertices in the cleaned meshes in a sequence.

Once the cleaning of the sequences in the mesh is com-

pleted, then approximately 10 meshes are selected at key

frames from the sequence including the mesh providing the

frontal, left profile and right profile views and a few other

views between them. Any mesh that contains features in the

texture that could degrade the quality of the reconstructed

mesh, such as frames where the subject blinks an eye, is

dropped.

The selected 10 meshes from the sequence are then man-

ually aligned and registered using CloudCompare3. The ten

meshes are loaded and pairwise aligned starting with the

frontal mesh and moving to consecutive meshes until reach-

ing one of the side profiles. The same procedure is repeated

for the meshes on the other side profile as well. The aligning

of 2 meshes is conducted by point correspondence between

the source mesh (the mesh that was previously aligned with

the frontal mesh being the base case) and the target mesh.

Approximately 5-6 correspondence points are used for the

aligning procedure. In case the quality of the alignment

was visibly inaccurate, more points were used for corre-

spondence. However, this procedure only provides a rough

alignment between the 2 meshes, and in order to align the

two meshes more finely we use the iterative closest point

(ICP) algorithm. The ICP is allowed to run until the RMSE

difference is below 1x10−4 with a final overlap of 60-80%.

The percentage of overlap is decided by the similarity be-

tween the 2 meshes. Again, the source and target meshes

are the same as they were used in the rough alignment pro-

cedure. Once all the meshes have been aligned and regis-

tered using ICP in a pairwise manner, they are then merged

together to create a new mesh.

The merged mesh from the registering of the meshes

might have introduced some artifacts, especially around the

borders of 2 aligned meshes or at areas where meshes weave

and overlap each other. In order to reduce these artifacts and

create a smooth watertight surface of the 3D scan we apply

a Screened Poisson reconstruction on the merged mesh us-

ing the method described in [12]. This watertight surface

mesh is used as the final reconstructed 3D ground truth for

the subject as shown in Figure 2c.

3http://www.cloudcompare.org/

Figure 2. (a) The last 51 facial landmarks from dlib library. (b) The

cropped 95mm cropped ground truth mesh. (c) The full watertight

ground truth mesh for a sample subject.

Data Fold Total Meshes Stratification No. Subjects

Train 26 Both 26

Validation 14
HiRes 7

iPhone 7

Test 26
HiRes 13

iPhone 13

Table 3. The number of subjects distributed across the multiple

folds. The data includes the cropped ground truths and their 51

landmarks along with the videos in both high resolution and a

lower iPhone captured video.

2.3. Data Folds

The 3DFAW-Video dataset is split into 3 subject-

independent folds: the train, validation and the test set,

as shown in Table 3. The training data fold contains both

the high resolution (HiRes) video frames from the DI3D

3D imaging system as well as the iPhone 6 video for 26

subjects. We also provide 51 facial landmark annotations

for each of the subjects with the frontal frames of each of

the video sources, along with their corresponding 3D land-

mark locations. The 51 facial landmarks, as shown in Fig-

ure 2a, are the inner facial landmark subset of the 68 land-

marks provided by the dlib library[13]. Since the challenge

focuses on dense 3D reconstruction from 2D videos, the

validation set provides only one video component, either

iPhone 6 or high resolution (HiRes) frames. The validation

set contains 14 total subjects with 7 videos of each reso-

lution. The test set is similarly stratified to contain only

one of the 2 resolution videos for each subject and forces

the dense 3D reconstruction to be created from the speci-

fied sources. The third component, the 3D ground truth is

provided for only the train fold and a smaller trimmed sur-

face, as shown in Figure 2b, of the full watertight mesh is

provided instead of the full watertight mesh. A distance

of 95mm around the landmark at the tip of the subject’s

nose is used as the criterion for the trimmed mesh follow-

ing the protocol in [4]. It is worth noting that the meshes
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are non-textured and only provide the shape of the face and

the corresponding 3DFAW-Video challenge is primarily in-

terested in accurately capturing the face shape and hence

did not need textured submissions. The data releases can be

downloaded from the challenge website4.

3. Evaluation Protocol

In order to evaluate the various different methods on the

3DFAW-Video dataset, we provide the evaluation code in

Python for the competition. The evaluation protocol and

code was adapted from the protocol described in [4]. The

procedure includes the trimming of the predicted meshes

for each subject to a radius of 95mm around their nose tip

using the landmarks provided. The landmarks that are as-

sociated with each of the 51 facial fiduciary features are

used to rough align the predicted meshes to their ground

truths. Once the predicted meshes are trimmed to the re-

gion of the face corresponding to the ground truth meshes,

they are then rigidly aligned using the iterative closest point

(ICP) method. The aligned meshes are then compared us-

ing a metric that we introduce, using a sampled down copy

of the mesh for efficiency. Both iPhone and HiRes videos

based reconstructions are evaluated in the testing phase of

the challenge due to the stratification of the video data in

the test fold.

Although most 3D ground truth datasets commonly use

3D-RMSE as the metric for their evaluation, 3D-RMSE is

not entirely a symmetric metric. Hence, for the 3DFAW-

Video dataset we introduce, Average root mean square er-

ror(ARMSE), a modification of the 3D-RMSE metric that

ensures that the metric is symmetric.

Average root mean square error, ARMSE, is an eval-

uation metric, which is the average of the point-to-mesh

distance between the ground truth and predicted and vice

verse. The Euclidean error is used as the distance metric

between point and mesh, and is computed using the equa-

tion 1 below:

E(Ai, B) = min(‖Ai −Bv‖2 , ‖Ai −Be‖2 , ‖Ai −Bf‖2)
(1)

In equation 1, A is the source mesh and B is the target

mesh. Ai is a vertex in mesh A, Bv is the closest vertex to

Ai on B, and similarly Be is the closest edge on B to Ai,

and Bf is the closest face on B to Ai. The above equation 1

calculates the shortest distance between a vertex in A to the

surface of the mesh B. The closest vertices, edges and faces

on the target mesh B are found using a nearest neighbor

search. Here, D(A,B) is defined between the 2 meshes, the

source mesh A, and the target mesh B, with Na being the

number of vertices in the source mesh A. The intermediate

4https://3dfaw.github.io/

RMSE error, D(A,B), from the source mesh A to the target

mesh B can be calculated using the equation 2.

D(A,B) =

√√√√ 1

Na

Na∑
i

E(Ai, B)2 (2)

ARMSE(X,Y ) =
100(D(X,Y ) +D(Y,X))

2I
(3)

Then using this error metric D(A,B), the RMSE scores

between the predicted and ground truth and vice-versa are

calculated. The 2 different RMSE scores are calculated

with each of X ,Y meshes made to be the source mesh A
with the other as the target mesh B, because the nearest

neighbor search for the closest vertices/edges/faces in the

target mesh is not symmetric. This provides the 2 RMSE

scores, D(X,Y ) and D(Y,X) as in equation 3. Here, I is

the outer inter-ocular distance on the ground truth mesh Y ,

i.e. the euclidean distance between the 19th and 28th land-

mark points of the 51 dlib facial landmarks, in 3D space.

The overall ARMSE score calculated by equation 3 is then

scaled to report the error as a percentage of the outer inter-

ocular distance of the subject.

The ARMSE metric allows for reducing the effect of the

density of the predicted meshes from playing a very drastic

role in determining the final score of the reconstruction un-

like the traditional 3D-RMSE score. 3D-RMSE would pro-

duce low scores for a mesh that has fewer vertices, but lie

close to the ’average face’, as it only takes into account the

one sided distance from the vertices of the predicted mesh to

the surface of the ground truth mesh. By taking the reverse

distance from the vertices of the ground truth to the surface

of the predicted mesh, such ’average face’ meshes would

produce higher scores, and thereby penalize the mesh re-

construction score from the bias on mesh density. ARMSE,

takes the average of both these scores and hence takes is

less effected by the bias on density of the meshes than 3D-

RMSE. The normalization by the outer inter-ocular distance

is done to ensure that the inter-subject face size difference is

captured in the metric. The ARMSE metric can be thought

of as the average symmetric distance between the 2 meshes

as a percentage of the subject’s outer inter-ocular distance.

Hence, the symmetrical ARMSE metric is an improvement

over the traditional 3D-RMSE metric, by reducing the ef-

fects of density of meshes and also improving the readabil-

ity of the metric. Although other metrics such as cham-

fer distance and earth mover’s distance exists, the former of

which is a bi-directional distance metric similar to ARMSE,

they are primarily used for point clouds and not for 3D

meshes and cannot capture the distance between points in

one mesh to the mesh surface of another.
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Rank Team mean ARMSE

1. Zheng 1.6962

2. Shao et al.[22] 1.8642

3. Maldonado et al. [17] 2.1429

4. Chen 2.1865

Table 4. The mean ARMSE scores of the different methods on the

3DFAW-Video test set.

Figure 3. The cumulative error distribution of the participants’

methods in the leader-board.

4. Summary of Competition Approaches
The competition was hosted on the Codalab5 platform

where eight teams submitted results. Of these eight teams,

only four completed the challenge by submitting a techni-

cal description of their methods. Hence, we only report the

results and methods of these four teams. Table 4 provides

the final leader-board results for the competition, ranked by

their mean ARMSE scores on the testing set of the 3DFAW-

Video dataset. The methods used by the participants in the

competition are discussed briefly below, from the ones that

performed the best on the 3DFAW-video dataset onward.

Yinglin Zheng proposed a method that is based on the

traditional 3D dense reconstruction using structure from

motion(SFM), that is improved by utilizing facial prior

knowledge. First, a face parser was used to segment the

head region and SFM routine estimates the camera parame-

ters and sparse 3D point cloud. Then the sparse point cloud

is used for fitting a 3DMM, in the face subspace. Then a

non-rigid registration is conducted to match the subspace

shape more closely with the point cloud. A general dense

reconstruction along with an outlier pruning by projecting

the 3D points onto the union region of the parsing mask and

projection region of the aligned shape is executed. Finally, a

2nd-pass non-rigid registration is conducted to align a tem-

5https://codalab.lri.fr

plate mesh with the pruned dense 3D point cloud by mini-

mizing an energy function, to further enrich more details of

the final mesh.

Xiao-Hu Shao et al.[22] used an ensemble of indepen-

dent regression networks to create a framework consist-

ing of multiple reconstruction branches and a subsequent

mesh retrieval module. The multi-reconstruction branches

produce 3D shapes using regression networks such as

3DDFA[33], PRNet[5], and MVFnet [26], and based on

weighted linear combination all frames of the video. A syn-

thesized image is rendered from the candidate shape, and

texture maps predicted by each of the branches. Finally

a mesh retrieval module selects the best fitting mesh us-

ing a weighted photo distance defined between the ground

truth texture and the synthesized texture for the 3D shape.

The training of their network was done on the 300W-LP

dataset[33] which provides fitted 3DMM parameters for

over 60,000 images.

Eduard R. Maldonado et al.[17] proposed a learning

based method employing siamese neural networks that re-

constructs 3D faces from either single or multiple images.

Their multi-view solution uses the siamese networks to pre-

dict both the individual camera poses and the shape param-

eters of the 3DMM model for each of the multiple views.

These shape parameters are then merged and then regressed

on using another multi-layer perceptron to get the final

shape parameters of the 3DMM model. The network was

trained on their own dataset of 6,528 diverse individuals,

and used a hyperparameter-less, unsupervised loss which is

composed of the sum of the reprojection errors across all

the different input views.

Richard Chen tried a much more traditional 3DMM fit-

ting approach by finding a least squares solution for the PnP

problem of keypoints, but augmented it by using race spe-

cific basis and mean face shapes. Most significantly, they

used their own dataset to obtain the basis and mean face for

eastern faces. They also used the basis and mean faces from

the EOS project[10] and the Basel Face Model (BFM) [8].

Since the meshes from each model had different topologies,

they were unified to single topology using a mesh transfer

function. Finally, an exhaustive combination of the different

basis and mean faces was used to then pick the reconstruc-

tion with the minimal error.

These were the methods used by some of the partici-

pants in the 3DFAW-Video challenge and it is apparent that

3DMM based approaches were unanimously the most com-

mon. The cumulative error distribution for the 4 different

methods described above can be found in Figure 3.

5. Conclusion
In this paper we have presented the 2nd 3D Face Align-

ment in the Wild from Videos (3DFAW-Video) Challenge

dedicated to dense 3D face reconstruction from 2D video.

3087

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 31,2023 at 19:33:54 UTC from IEEE Xplore.  Restrictions apply. 



The challenge evaluated the performance of the recon-

struction on a new large corpora of profile-to-profile face

videos annotated with corresponding high-resolution 3D

ground truth meshes. The dataset included profile-to-profile

videos obtained under a range of conditions: (i) high-

definition in-the-lab video, (ii) unconstrained video from an

iPhone device, and (iii) high-resolution 3D face scans from

a Di3D imaging system. The challenge addresses the sig-

nificant problem of reconstructing the dense 3D structure of

the face from the two different video sources.

The paper reports results for four challenge participants

that provided necessary technical descriptions of their meth-

ods. These results demonstrate room for potential improve-

ments to be brought by future participants.
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