12 research outputs found

    Adaptive Control Using Multiple Models and Model Weighting

    No full text
    A general methodology for the identification and control of dynamical systems with several operating environments and possessing a high degree of uncertainty is presented. Neural networks are used to create multiple models to capture the dynamics of the various environments of the system. Control is effected by combining these models by using an evolutionary strategy. The methodology is applied to the problem of controlling a two-link robotic manipulator in the presence of disturbances and varying load conditions. Simulated results presented show that the proposed methodology yields better results compared to the ones obtained by using a single model or by using multiple models but switching to and tuning the model with the smallest tracking error

    IoT electrochemical sensor with integrated ▫Ni(OH)2–NiNi(OH)_2–Ni▫ nanowires for detecting formaldehyde in tap water

    Get PDF
    Simple, low-cost methods for sensing volatile organic compounds that leave no trace and do not have a detrimental effect on the environment are able to protect communities from the impacts of contaminants in water supplies. This paper reports the development of a portable, autonomous, Internet of Things (IoT) electrochemical sensor for detecting formaldehyde in tap water. The sensor is assembled from electronics, i.e., a custom-designed sensor platform and developed HCHO detection system based on Ni(OH)2–Ni nanowires (NWs) and synthetic-paper-based, screen-printed electrodes (pSPEs). The sensor platform, consisting of the IoT technology, a Wi-Fi communication system, and a miniaturized potentiostat can be easily connected to the Ni(OH)2–Ni NWs and pSPEs via a three-terminal electrode. The custom-made sensor, which has a detection capability of 0.8 µM/24 ppb, was tested for an amperometric determination of the HCHO in deionized (DI) and tap-water-based alkaline electrolytes. This promising concept of an electrochemical IoT sensor that is easy to operate, rapid, and affordable (it is considerably cheaper than any lab-grade potentiostat) could lead to the straightforward detection of HCHO in tap water
    corecore