103 research outputs found

    Future temperature and salinity do not exert selection pressure on cyst germination of a toxic phytoplankton species

    Get PDF
    Abstract Environmental conditions regulate the germination of phytoplankton resting stages. While some factors lead to synchronous germination, others stimulate germination of only a small fraction of the resting stages. This suggests that habitat filters may act on the germination level and thus affect selection of blooming strains. Benthic ?seed banks? of the toxic dinoflagellate Alexandrium ostenfeldii from the Baltic Sea are genetically and phenotypically diverse, indicating a high potential for adaptation by selection on standing genetic variation. Here, we experimentally tested the role of climate-related salinity and temperature as selection filters during germination and subsequent establishment of A. ostenfeldii strains. A representative resting cyst population was isolated from sediment samples, and germination and reciprocal transplantation experiments were carried out, including four treatments: Average present day germination conditions and three potential future conditions: high temperature, low salinity, and high temperature in combination with low salinity. We found that the final germination success of A. ostenfeldii resting cysts was unaffected by temperature and salinity in the range tested. A high germination success of more than 80% in all treatments indicates that strains are not selected by temperature and salinity during germination, but selection becomes more important shortly after germination, in the vegetative stage of the life cycle. Moreover, strains were not adapted to germination conditions. Instead, highly plastic responses occurred after transplantation and significantly higher growth rates were observed at higher temperature. High variability of strain-specific responses has probably masked the overall effect of the treatments, highlighting the importance of testing the effect of environmental factors on many strains. It is likely that A. ostenfeldii populations can persist in the future, because suitable strains, which are able to germinate and grow well at potential future climate conditions, are part of the highly diverse cyst population. OPEN RESEARCH BADGES This article has been awarded Open Data badge. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.c8c83nr. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.peerReviewe

    Effects of Deposit-Feeder Gut Passage and Fecal Pellet Encapsulation on Germination of Dinoflagellate Resting Cysts

    Get PDF
    Many species of dinoflagellates spend much of their lives buried in sediments as resting cysts. While on the bottom, cysts may pass through the guts of deposit feeders before conditions become favorable for germination. Little is known, however, about how dinoflagellate cysts are affected by deposit-feeder digestion, fecal pellet formation, and translocation within the sediment column. To answer the question of whether gut passage or pelletization reduces cyst germination, we fed cysts of the dinoflagellate Scrippsiella lachrymosa to 3 polychaete deposit feeders, Capitella sp., Streblospio benedicti, and Polydora cornuta. Fecal pellets of these species have different morphologies and represent a wide range of pellet robustness. To examine the effects of longer gut-passage times, cysts were incubated in the digestive fluids of the polychaete Arenicola marina for up to 24 h, and monitored to determine germination success. Cysts were remarkably resistant to digestion by deposit-feeding polychaetes, and were capable of germinating even within the robust fecal pellets of Capitella. In fact, cysts were more likely to germinate within fecal pellets of Capitella than outside those pellets. Thus, pellets may be favorable environments for germination of resting cysts. Our data suggest that deposit-feeder gut passage and pelletization do not substantially reduce germination of dinoflagellate cysts in the field, and may even enhance it

    Decadal-Scale Changes of Dinoflagellates and Diatoms in the Anomalous Baltic Sea Spring Bloom

    Get PDF
    The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995–2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms

    Long-term changes in bloom dynamics of Southern and Central Baltic cold-water phytoplankton

    Get PDF
    In the Baltic Sea, cold-water adapted dinoflagellates and diatoms dominate the phytoplankton spring bloom of the Northern and Eastern Basins of the Baltic Sea. In the Central and Southern parts, where such species are less prominent, they cause occasional biomass peaks. We hypothesized that these dynamics correlate with ice cover, sea surface temperature (SST), and water transport processes, as the large Basins of the Central Baltic Sea are too deep to build-up blooms from their own seed banks. Long-term monitoring data from the past 40 and 20 years in the central and southern Baltic Sea, respectively, were analyzed here for biomass development of five cold-adapted taxa: the diatoms Pauliella taeniata, Thalassiosira baltica, Thalassiosira levanderi and Melosira spp. and the dinoflagellate Peridinella catenata. Results show that diatoms generally reached high biomass peaks in the 1980s and in shorter periods from 1995-1997, 2003- 2006, and 2010-2013 in all areas. We detected good correlations with the length of the ice cover period as well as low minimum and mean winter and spring SSTs. In contrast, biomass dynamics of the dinoflagellate P. catenata are more independent from these factors but have decreased strongly since the beginning of the 21st century. A numerical ocean model analysis confirmed the hypothesis that large blooms in the deep basins are seeded through water transport from adjacent shallow, ice-covered coastal areas such as the Gulf of Finland and the Gulf of Riga. Our results show that under ongoing climate warming, the common cold-water species may disappear from spring blooms in southern and central areas with unknown consequences for the ecosystem

    Diversity of luciferase sequences and bioluminescence production in Baltic Sea Alexandrium ostenfeldii

    Get PDF
    The toxic dinoflagellate Alexandrium ostenfeldii is the only bioluminescent bloom-forming phytoplankton in coastal waters of the Baltic Sea. We analysed partial luciferase gene (lcf) sequences and bioluminescence production in Baltic A. ostenfeldii bloom populations to assess the distribution and consistency of the trait in the Baltic Sea, and to evaluate applications for early detection of toxic blooms. Lcf was consistently present in 61 Baltic Sea A. ostenfeldii strains isolated from six separate bloom sites. All Baltic Sea strains except one produced bioluminescence. In contrast, the presence of lcf and the ability to produce bioluminescence did vary among strains from other parts of Europe. In phylogenetic analyses, lcf sequences of Baltic Sea strains clustered separately from North Sea strains, but variation between Baltic Sea strains was not sufficient to distinguish between bloom populations. Clustering of the lcf marker was similar to internal transcribed spacer (ITS) sequences with differences being minor and limited to the lowest hierarchical clusters, indicating a similar rate of evolution of the two genes. In relation to monitoring, the consistent presence of lcf and close coupling of lcf with bioluminescence suggests that bioluminescence can be used to reliably monitor toxic bloom-forming A. ostenfeldii in the Baltic Sea.Peer reviewe

    Seasonal genotype dynamics of a marine dinoflagellate : Pelagic populations are homogeneous and as diverse as benthic seed banks

    Get PDF
    Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%-100%) combined with intermediate to low gene diversity (0.58-0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic-pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic-pelagic coupling maintain high clonal diversity in both habitats.Peer reviewe

    A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea

    Get PDF
    19 páginas, 6 tablas, 4 figuras.-- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedAlexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5–25.5°C and 5–21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate’s growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussedThis work is a contribution of the Unidad Asociada "Microalgas Nocivas" (CSIC-IEO) and was financially supported by the CCVIEO project and CICAN-2013-40671-R (Ministry of Economy and Competitiveness). P. Salgado is a researcher at IFOP, which has provided financial support for his doctoral stayPeer reviewe
    • …
    corecore