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Abstract 

The toxic dinoflagellate Alexandrium ostenfeldii is the only bioluminescent bloom forming 

phytoplankton in coastal waters of the Baltic Sea. We analysed partial luciferase gene (lcf) 

sequences and bioluminescence production in Baltic A. ostenfeldii bloom populations to 

assess the distribution and consistency of the trait in the Baltic Sea, and to evaluate 

applications for early detection of toxic blooms. Lcf was consistently present in 61 Baltic 

Sea A. ostenfeldii strains isolated from six separate bloom sites. All Baltic Sea strains 

except one produced bioluminescence. In contrast, the presence of lcf and the ability to 

produce bioluminescence did vary among strains from other parts of Europe. In 

phylogenetic analyses, lcf sequences of Baltic Sea strains clustered separately from North 

Sea strains, but variation between Baltic Sea strains was not sufficient to distinguish 

between bloom populations. Clustering of the lcf marker was similar to internal transcribed 

spacer (ITS) sequences with differences being minor and limited to the lowest hierarchical 

clusters, indicating a similar rate of evolution of the two genes. In relation to monitoring, 

the consistent presence of lcf and close coupling of lcf with bioluminescence suggests that 

bioluminescence can be used to reliably monitor toxic bloom-forming A. ostenfeldii in the 

Baltic Sea. 
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Introduction 

Bioluminescence has independently evolved at least 40 times in oceans and terrestrial 

environments among taxa ranging from bacteria and unicellular microalgae to large fish 

and squids (Haddock et al., 2010; Widder, 2010). The majority of bioluminescent 

organisms occur in oceans, with around 80% of the more than 700 genera containing 

bioluminescent species found in marine environments (Widder, 2010). In the oceans 

bioluminescence occurs from surface waters to the deep sea, serving a range of functions 

from self-defense to camouflage, reproduction and intra-species communication (Widder, 

2010; Haddock et al., 2010). Virtually all bioluminescence in surface waters of oceans 

originates from dinoflagellates and they are responsible for the sparkling lights that can be 

seen at night (Marcinko et al., 2013). Dinoflagellates consist of 117 described genera of 

which 17 have bioluminescent members (Valiadi & Iglesias-Rodriguez, 2013). 

Bioluminescence is present in a large number of bloom-forming and /or toxic dinoflagellate 

species (Valiadi et al., 2012; Cusick & Widder, 2014). In the genus Alexandrium, one of 

the major harmful algal bloom genera, bioluminescence occurs in 89% of screened species 

(Valiadi et al., 2012). It has therefore been suggested that bioluminescence could be used 

as an indicator of harmful dinoflagellate blooms (Kim et al., 2006; Haddock et al., 2010; 

Le Tortorec et al., 2014). 

Bioluminescence in dinoflagellates is considered to be a defensive 

mechanism against grazing, possibly attracting the predator’s predators (Buskey et al., 

1983; Buskey & Swift, 1985; Abrahams & Townsend, 1993; Fleisher & Case, 1995) or 

functioning as an aposematic signal (Cusick & Widder, 2014). The bioluminescent system 

of dinoflagellates is uniquely based in specific cellular organelles, scintillons (DeSa & 

Hastings, 1968). These contain a luciferase enzyme, a light-emitting luciferin substrate and, 
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in many species, a luciferin-binding protein (Knaust et al., 1998; Akimoto et al., 2004; 

Valiadi & Iglesias-Rodriguez, 2014). To date, the luciferase gene (lcf) has been fully 

sequenced from eight dinoflagellate species (Liu & Hastings, 2007; Valiadi & Iglesias-

Rodriguez, 2013) and partial sequences are available from species belonging to genera 

Alexandrium, Ceratium, Ceratocorys, Gonyaulax, Fragilidium and Protoperidinium 

(Valiadi et al., 2012, 2014). Previous studies have included 4 - 6 partial sequences from 

single species (Baker et al., 2008; Valiadi et al., 2012). In most species lcf consists of three 

tandemly repeated domains, each consisting of a highly conserved central region that 

encodes a catalytically active site (Li et al., 1997; Li & Hastings, 1998; Liu et al., 2004) 

and is bordered by more variable N- and C- terminal regions (Okamoto et al., 2001; Liu et 

al., 2004). In general, within-species differences between lcf domains are larger than 

between-species differences of the same domain (Okamoto et al., 2001; Liu et al., 2004). 

In addition, there are differences in the untranslated region sequences and in the length of 

these regions between species (Okamoto et al., 2001; Liu et al., 2004).  

There is also intra-species variation in bioluminescence production. For 

example, Valiadi et al. (2012) found that the species Ceratocorys horrida Stein and 

Alexandrium tamarense (Lebour) Balech contained both bioluminescent and non-

bioluminescent strains even though all strains possessed lcf. Also, the bacteria Vibrio 

cholerae has been reported to have both bioluminescent and non-bioluminescent strains 

that all have lcf (Palmer & Colwell, 1991). Similar findings have been obtained from the 

more widely studied functional gene for saxitoxin, where many strains from the A. 

tamarense species complex contain the gene but not all produce saxitoxin (Orr et al., 2011; 

Murray et al., 2012). The relationship between presence of lcf and production of 

bioluminescence is not well known in dinoflagellates, and very little information exists on 

intra-species variation of lcf sequences from dinoflagellate species in general. 
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  Alexandrium ostenfeldii (Paulsen) Balech and Tangen is a toxin-producing 

and bioluminescent dinoflagellate with a wide geographic distribution in temperate and 

Arctic waters (e.g. Moestrup & Hansen, 1988; Mackenzie et al., 1996; John et al., 2003; 

Gribble et al., 2005; Almandoz et al., 2014; Tillmann et al., 2014). In oceans, A. ostenfeldii 

typically occurs at low abundance (Moestrup & Hansen, 1988; John et al., 2003) but dense 

blooms of the species have been increasingly observed during the last decade in coastal 

areas of the Atlantic USA (Borkman et al., 2012; Tomas et al., 2012), Italy (Ciminiello et 

al., 2006), The Netherlands (Burson et al., 2014) and the Baltic Sea (Kremp et al., 2009). 

These blooms have the potential to be harmful as A. ostenfeldii can produce paralytic 

shellfish toxins (PSTs), spirolides and gymnodimines (Van Wagoner et al., 2011; Tomas 

et al., 2012; Kremp et al., 2014; Tillmann et al., 2014). For example, PSTs can accumulate 

in benthic and littoral food webs and affect higher trophic levels (Campbell et al., 2005; 

Jester et al., 2009; Anderson et al., 2012; Setälä et al., 2014).  

This study focuses on the Baltic Sea where three dinoflagellate species 

capable of bioluminescence have been recorded. Protoceratium reticulatum (Claparéde & 

Lachmann) Bütschli is found in low abundances throughout the open Baltic (Hällfors, 

2004; Mertens et al., 2012), while Lingulodinium polyedrum (Stein) Dodge is only 

encountered in the southern parts of the Baltic (Hällfors, 2004). Currently A. ostenfeldii is 

the only bioluminescent dinoflagellate known to form dense blooms in the coastal areas of 

central and northern Baltic Sea (Hakanen et al., 2012; Le Tortorec et al., 2014).  The 

distribution and consistency of bioluminescence in Baltic A. ostenfeldii is of interest to 

evaluate applications for early detection of toxic blooms. Therefore, we examine here: a) 

if separate bloom populations of A. ostenfeldii have lcf, b) if lcf is uniformly present 

throughout bloom populations, and c) if it is consistently paired with bioluminescence 

production. Subsequently, we analyse the diversity of lcf sequences among A. ostenfeldii 
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bloom populations to determine whether lcf can be used to distinguish local Baltic bloom 

populations. Finally, we present results from a field survey where lcf presence, 

bioluminescence production and abundance of A. ostenfeldii cells are provided in order to 

evaluate the use of lcf and bioluminescence for early detection of A. ostenfeldii blooms. 

 

Materials and methods 

A. ostenfeldii cultures 

Included in this study are cultured strains isolated from six bloom sites around the Baltic 

Sea with known A. ostenfeldii bloom occurrences, nine strains originating from the North 

Sea, and four strains originating from Canada, China and Spain (Table S1). All Baltic 

strains were established from resting cysts isolated from sediment samples, while the other 

strains were grown from cells collected from the water column. Detailed information on 

the isolation and establishment of the used isolates is given in Tahvanainen et al. (2012) 

and Kremp et al. (2014). All strains were grown in 40 ml batch cultures in f/2-Si medium 

(Guillard & Ryther, 1962) adjusted to native salinities (6 psu for Baltic Sea strains and 30 

psu for all other strains) in vented 50 ml polycarbonate tissue culture flasks at 16 ºC on a 

12:12 light dark cycle at 100 µmol photons m-2 s-1. 

 

Bioluminescence test 

Dense A. ostenfeldii cultures in their late exponential to early stationary phase were visually 

tested for bioluminescence production by shaking the culture bottles in a dark room during 

their scotophase. If no bioluminescence was observed, 2.7 ml of culture was transferred 

into a 3.7 ml optical glass cuvette. The cuvette was placed inside a cuvette holder in a 

Varian Cary Eclipse Spectrofluorometer. Bioluminescence was chemically stimulated by 
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adding 400 µl of 0.1 M HCl (Hamman & Seliger, 1972) using plastic tubing and a pipette. 

The intensity of bioluminescence was measured at 470 nm. If bioluminescence was still 

not observed, the procedure was repeated at least five times for separate culture bottles of 

the same strain, over a 3-month period. Bioluminescence tests were always carried out at 

the same time of the scotophase, examining all cultures within a one hour period. 

 

DNA extraction of cultured A. ostenfeldii 

Clonal cultures in their exponential growth stage were used for DNA extraction. 30 ml of 

culture was transferred to a 50 ml Falcon tube and concentrated by centrifuging at 4000 × 

g for 30 min. After discarding most of the supernatant the pellet was resuspended into the 

remaining liquid and pipetted into two 1.5 ml Eppendorf tubes. The samples were 

subsequently centrifuged at 14000 × g for 15 min. The supernatant was then discarded, and 

cell pellets were disrupted using a motor pestle (Pellet Pestle Cordless Motor, Kontes Glass 

Company, Kimble). DNA was extracted using a Plant Mini Kit (Qiaqen) and purified with 

a PCR Template Purification Kit (Roche) according to manufacturer instructions. DNA 

purity and concentration were measured using NanoDrop ND-1000 (Thermo Scientifec). 

DNA samples were stored at -80 ºC until further processing. 

 

PCR reaction 

All DNA samples were amplified using the “universal” lcf primers for dinoflagellates 

(LcfUniCHF3: TCCAGGTTGCACGGCTTCGAGCNGCNTGGC and LcfUniCHR4: 

GGGTCTTGTCGCCGTAGTCAAANCCYTTRCA) developed by Baker et al. (2008). 

These primers target the non-homologous N-terminal region and the start of the first 

domain of the lcf. We chose these primers because they amplify the region at the beginning 

of lcf which is more diverse than central regions, and give longer sequences than more 
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conservative primers (Baker et al., 2008). PCR reactions were performed in 25 µl reaction 

volume in PCR beads (Illustra PuReTaq Ready-to-go-PCR-beads, GE Healthcare) 

consisting of 16 - 22 µl sterile ultrapure water, 2 µl of each primer and 1 to 5 µl of DNA 

(about 100 ng). PCR reactions were performed following Baker et al. (2008) as follows: 5 

min at 95 ºC, 35 cycles of 45 s at 95 ºC, 30 s at 62 ºC and 30 s at 68 ºC and a final extension 

step of 10 min at 68 ºC. Presence of lcf was confirmed by running the PCR products on to 

a 2% TBE gel. The expected size of the PCR product was 500 - 550 bp. All cultured strains 

that produced a clear PCR product on gel were sequenced to confirm that the correct 

product had been amplified and to allow further phylogenetic analysis. The internal 

transcribed spacer (ITS-1 and ITS-2) and 5.8 rDNA sequences were generated as described 

in Tahvanainen et al. (2012).  

 

Sequencing  

Purified PCR products were used as templates in sequencing reactions, which were carried 

out with the same forward or reverse primers as the PCR reaction. Sequencing was done 

according to the protocol of Applied Biosystems with BigDyeH Terminator v3.1 Cycle 

Sequencing Kit, and purified in a Biomek® NXP Laboratory Automation Workstation 

(Beckman Coulter) according to the Agencourt® CleanSEQ kit protocol, and sequenced in 

an Applied Biosystems ABI3130XL Genetic Analyzer (16-capillaries) or ABI3730 DNA 

Analyzer (48-capillaries). 

 

Phylogenetic analysis 

The lcf sequences were assembled and edited as necessary in Chromas Pro 1.7.6. The DNA 

sequences were aligned using ClustalW (Thompson et al., 1994) in MEGA6 (Tamura et 

al., 2013) and minor manual adjustments to final alignment were performed. The data set 
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consisted of 59 ingroup sequences with a total alignment length of 525 bp. GenBank was 

searched for known Alexandrium lcf sequences for the region amplified by LcfUniCHF3 

and LcfUniCHR4. All nine found sequences were used as outgroups. These included A. 

tamarense, A. catenella, A. fundyense and Alexandrium sp. 

ITS sequences were assembled and manually edited where needed in 

Chromas Pro 1.5. Multiple sequence alignment was carried out in MAFFT (Multiple 

Alignment with Fast Fourier Transform, Katoh et al., 2009) in SeaView (Gouy et al., 2010) 

using default settings. The data set consisted of 59 ingroup sequences, and had a total length 

of 581 bp. Alexandrium minutum, A. tamutum, A. tamarense, A. fundyense, A. catenella 

and A. insuetum were used as outgroups. The resulting alignments are available upon 

request.  

 

Statistical analysis 

Phylogenetic analyses were performed using MrBayes v3.2 (Ronquist & Huelsenbeck, 

2003). For lcf data Bayesian inference (BI), with substitution model GTR + G (Rodríguez 

et al., 1990), selected under the Bayesian Information Criterion (BIC) with jModelTest 

0.1.1. (Posada, 2008) was used. Lacking specific knowledge on parameter priors, default 

settings for prior distributions were used in all analyses. Two runs with four chains (one 

cold and three incrementally heated chains) were run for 15 million generations, sampling 

every 500 trees. In each run, the first 25% of samples were discarded as the burn-in phase. 

The stability of model parameters and the convergence of the two runs were confirmed 

using Tracer v1.5 (Rambaut & Drummond, 2007). A maximum likelihood (ML) 

phylogenetic tree was calculated in MEGA6 (Tamura et al., 2013), using an evolutionary 

model GTR + G + I, selected under the Akaike Information Criteria (AIC) with jModelTest 
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0.1.1 (Posada, 2008). Gaps and missing data were treated as complete deletion. Tree 

topology was supported with bootstrap values calculated with 2000 replicates.  

For the BI of ITS-1, ITS-2 and 5.8 rDNA sequences, the substitution model, 

GTR + G (Rodríguez et al., 1990) based on the BIC in jModelTest 0.1.1. (Posada, 2008) 

was used. The BI analyses of ITS sequences were done with the default settings for prior 

distributions. Two runs with four chains (one cold and three incrementally heated chains) 

were run for 15 million generations, sampling every 500 trees. In each run, the first 25% 

of samples were discarded as the burn-in phase. The stability of model parameters and the 

convergence of the two runs were confirmed using Tracer v1.5 (Rambaut & Drummond, 

2007). For ITS-1, ITS-2 and 5.8 rDNA sequences, the ML phylogenetic tree was calculated 

in MEGA6 (Tamura et al., 2013), using an evolutionary model GTR + G selected under 

the AIC with jModelTest 0.1.1 (Posada, 2008). Gaps and missing data were treated as 

complete deletion. Tree topology was supported with bootstrap values calculated with 2000 

replicates.  

 

Field survey 

Seawater samples for lcf detection were collected in the Åland archipelago situated 

between Finland and Sweden from 9 to 11 of August 2011 (Fig. 1). A 7 km transect through 

a known bloom site of A. ostenfeldii was sampled at 10 locations. On each sampling 

occasion, between 5 to 10 l of seawater from 0.5 m depth was sequentially filtered through 

76- and 25-µm sieves. The 25- to 76- µm fraction was retained and washed into a 50 ml 

Falcon tube. The concentrated sample was filtered onto a Whatman GF/F glass fibre filter 

(Ø 25 mm), transported in liquid nitrogen and stored at -80 ºC. Stimulated bioluminescence 

was recorded at night using a sensitive submersible light sensor (GlowTracka, Chelsea 

Technologies Group, West Molesey, UK) that was lowered to a depth of 0.5 - 1.0 m at each 
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location for approximately 2 min. The noise floor of the instrument was 50 ± 6 pW cm-2. 

Because of this low noise floor, no threshold was used to define the presence of a 

bioluminescence signal. Water samples for cell counts were collected simultaneously with 

lcf samples. A detailed description of study site and procedures is given in Le Tortorec et 

al. (2014). 

For lcf detection, DNA was extracted from filters as follows: Filters were 

placed into a 2 ml safe lock Eppendorf tube with 0.2 ml glass beads (Ø 0.5 mm, Mobio) 

added beforehand. 600 µl of 5% Chelex buffer was added and tubes were vortexed at 4 min 

in a Mobio vortex adapter for Genie2 to disrupt dinoflagellate theca and release the DNA. 

Tubes were incubated at 99 ºC for 20 min and mixed by vortexing every 5 min. Samples 

were then centrifuged at 4000 × g for 1 min to sediment particles. The supernatant was 

transferred to a clean Eppendorf tube and centrifuged again at 13000 × g for 1 min. The 

supernatant containing extracted DNA was transferred to a new Eppendorf tube and 

refrigerated for 12 – 24 h for DNA to dissolve. DNA samples were stored at -80 ºC before 

PCR reactions were carried out as described above. PCR products from field samples were 

not sequenced. 

 

Results 

Amplification of lcf and bioluminescence production  

 Lcf was uniformly present in all A. ostenfeldii strains isolated from the Baltic Sea (Table 

1). We were able to detect lcf from all North Sea A. ostenfeldii strains, with the exception 

of two Irish (LSA06 and LSE05) and two UK strains (WW515 and WW517). Lcf was also 

present in strains from Canada, China and Spain. Bioluminescence production was 

observed in 60 out of 61 strains from the Baltic Sea. Only AOVA0924 from Gotland 
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(Sweden) did not produce bioluminescence. All North Sea strains from Norway and 

Scotland produced bioluminescence but no bioluminescence production was observed in 

strains from Ireland and the UK. Isolates from Canada and China both produced 

bioluminescence but no detectable bioluminescence was observed from the two Spanish 

strains (IEO-VGOAMD12 and IEO-VGOAM10C).  

 

Lcf diversity and phylogenetic structure in A. ostenfeldii 

Phylogenetic analyses of the partial lcf alignment, using both BI and ML methods, revealed 

that A. ostenfeldii lcf sequences formed a cluster that was distinct from other Alexandrium 

lcf sequences (BI 1.00, ML 99%). Within A. ostenfeldii, two major, well supported 

geographic clades were identified (Fig. 2), separating sequences of Baltic and North Sea 

isolates. Baltic and North Sea isolates differed by 11 - 22 (mean = 16) nucleotides. Within 

the North Sea clade the BI divided strains into two subgroups (BI 0.63) but these groups 

were not recognised by ML analysis. The difference between North Sea isolates was 0 - 8 

nucleotides (mean = 4), with sequences of NCH85 and S6P12E11 being identical and with 

strain AONOR4 from Oslo fjord differing most (7 – 8 nucleotides) from others. Strain IEO-

VGOAMD12 from the Spanish Mediterranean formed a separate branch between Baltic 

Sea and North Sea clades, with 14 - 23 nucleotide difference to Baltic Sea isolates and 14 

- 20 nucleotide difference to North Sea isolates. However, the position of this strain in 

phylogeny was weakly resolved, with low bootstrap and posterior probability values (BI 

0.65, ML 52%). Baltic Sea strains of A. ostenfeldii formed a monophyletic group (BI 0.73, 

ML 98%). Both BI and ML revealed one subcluster formed by four strains from Åland area 

(BI 0.59, ML 63%). Generally, nucleotide differences within the Baltic A. ostenfeldii 

strains were minor within and among Baltic bloom populations and geographic patterns 

were not evident within the Baltic Sea clade.  
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Presence of lcf in natural samples 

Bioluminescence was observed at all 10 locations along the investigated transect in the 

Föglö archipelago (Fig. 1). Bioluminescence intensities ranged from 65.78 - 1618.97 pW 

cm-2. A. ostenfeldii cells were detected from 9 locations (Table 2), and lcf was detected in 

eight of 10 locations. The PCR signal was absent from 2 samples (stations 2 and 8), of 

which station 2 contained a low abundance (120 cells L-1) of A. ostenfeldii cells. No A. 

ostenfeldii cells were detected at station 8. 

 

Discussion 

It is interesting to observe that lcf and ability to produce bioluminescence were uniformly 

present in the Baltic Sea A. ostenfeldii, in contrast to strains from other parts of Europe 

where these properties did vary. Lcf was detected in all studied strains except four strains 

(WW516 and WW517 from UK and LSA06 and LSE05 from Ireland) from which 

bioluminescence production was also not observed. These four strains belong to a distinct 

phylogenetic rDNA clade, group 2 of A. ostenfeldii (Kremp et al., 2014). The fact that these 

strains are closely related according to rDNA suggests that they all have either lost the lcf 

or the gene has mutated so that it is not functional anymore. This is supported by the fact 

that their close relatives, Spanish IEO-VGOAMD12 and IEO-VGOAM10C belonging to 

the same phylogenetic clade, possess the gene, but lack the function. Other studies have 

found that in some dinoflagellate species, e.g. C. horrida and A. tamarense, both 

bioluminescent and non-bioluminescent strains co-occur but also the non-bioluminescent 

strains always have lcf (Valiadi et al., 2012). Similar findings have been reported from V. 
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cholerae in which both bioluminescent and non-bioluminescent strains had lcf (Palmer & 

Colwell, 1991).  

It is possible to draw parallels with the saxitoxin gene, another functional 

gene providing a similar defensive mechanism as bioluminescence, but more widely 

studied in Alexandrium species. The intra-species variation in saxitoxin production is 

similar to what has been observed in bioluminescence production. For example, 

Alexandrium minutum Halim, A. ostenfeldii and strains from the A. tamarense species 

complex contain both saxitoxin producing and non-saxitoxin producing strains (Touzet et 

al., 2007; Orr et al., 2011; Murray et al., 2012; Suikkanen et al., 2013). Several studies 

show that non-saxitoxin producing strains still have the sxtA genes necessary for STX 

production (Stüken et al., 2011; Murray et al., 2012), whereas others have found that non-

saxitoxin producing strains lack essential genes of the cluster (Suikkanen et al., 2013). It 

is worth recalling that the primers used in the present study targeted the most variable 

region of lcf: the N-terminal region and the start of the first domain (Baker et al., 2008). 

Valiadi et al. (2012) showed that primers designed for these variable regions may not 

always give a positive signal for lcf, even if it is present, potentially due to too many 

nucleotide differences at the primer binding sites. Therefore, based on the results observed 

here it is not possible to say if the lcf is modified or truly absent in the respective strains.  

In addition to intra-species variation, the lack of bioluminescence in lcf 

positive strains might be a result of prolonged cultivation. Loss of bioluminescence in 

cultures over time has been observed in previous studies (Sweeney, 1986; von Dassow et 

al., 2005; Valiadi et al., 2012). Like toxin production, bioluminescence is a costly trait (e.g. 

Latz & Jeong, 1996; Wang et al., 2012) to maintain in monoclonal cultures where it brings 

no advantage. The Spanish strains IEO-VGOAMD12 and IEO-VGOAM10C have been in 

culture for more than ten years, hence this might indeed be considered as an alternative 
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explanation for lack of light emission in these strains despite presence of lcf. As the gene 

has most likely not been expressed in culture where bioluminescence serves no immediate 

purpose, mutations may have accumulated that inhibit the function. Detection limits might 

explain some of the negative bioluminescence observations as it has been suggested that 

detection of the gene without the obvious function (e.g. saxitoxin production) may also be 

due to detection limits of methods used (e.g. Negri et al., 2003). Baker et al. (2008) found 

that a strain of Gonyaulax spinifera (Claparède & Lachmann) Diesing produced 

bioluminescence at such low levels that it was undetectable to the human eye and only 

detectable with a sensitive light meter. However, we considered that the sensitivity of the 

detection method in the present study, using acid addition in a spectrometer equipped with 

a sensitive photomultiplier, was sufficient to detect bioluminescence of relatively few 

individual cells. Therefore, detectability is unlikely to have been an issue here.  

The 59 new partial lcf sequences of A. ostenfeldii generated here provide a first insight into 

intraspecific diversity of lcf. So far, lcf sequences have mostly been compared among 

dinoflagellate species (Baker et al., 2008; Valiadi et al., 2012). Our study revealed 

relatively low levels of sequence variation for A. ostenfeldii. Sequences were particularly 

conserved in isolates from the same geographic region, comparable to ITS rDNA. 

Previously reported values for lcf similarities in dinoflagellates range from 37.3% to 100% 

(Baker et al., 2008), with highest similarities between L. polyedrum strains. Pyrocystis 

lunula strains were found to be only 96.4% identical and members of the Alexandrium 

genus had an average sequence identity of 94.4%. In the present study, we observed large 

similarities between Baltic Sea strains (99.2% sequence identity). Strains from the North 

Sea also showed little to no variation (99.2% identity, with NCH85 and S6P12E11 

sequences being identical). Valiadi et al. (2012) found multiple non-identical copies of lcf 

within some dinoflagellate strains, with variation up to ca. 9% among sequences of an A. 
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fundyense strain. Large variation among gene copies is common in dinoflagellates and the 

degree of variation in lcf is in line with other studies (Tanikawa et al., 2004; Kim et al., 

2011; Valiadi & Iglesias-Rodriguez, 2014). However, polymorphisms among gene copies 

are often species-specific and have been observed for other genes particularly in A. 

fundyense (Miranda et al., 2012). In this study only two sequences were obtained per strain, 

and copy variation was not addressed. Sequence differences among lcf copies exist in A. 

ostenfeldii strains and they are negligible as indicated by the high sequence similarity and 

consistent clustering in phylogenetic analyses of the many Baltic isolates sequenced here.     

The Baltic Sea A. ostenfeldii form a divergent phylogenetic lineage that is 

clearly separated from North Sea populations, which is in line with previous studies using 

other genes (Tahvanainen et al., 2012; Tillmann et al., 2014; Kremp et al., 2014). In fact, 

the partial lcf phylogeny revealed by our analysis largely reflects the general topology of 

rDNA phylogenies obtained for A. ostenfeldii (Tahvanainen et al., 2012; Tillmann et al., 

2014; Kremp et al., 2014). The phylogenetic groups identified by Kremp et al. (2014) are 

reproduced by lcf phylogeny shown here with the Baltic Sea isolates representing group 1, 

the Spanish and North Sea strains representing group 2 and 6 respectively. As in Kremp et 

al. (2014), the position of clade 2 was poorly resolved (ML 52%, BI 0.65). When compared 

to an ITS phylogeny of the strains analyzed for lcf (Fig. S1) the grouping and branching of 

both phylogenies are nearly identical. The main difference is the lack of subclusters inside 

Baltic Sea and North Sea clades in the ITS tree. Phylogenetic analysis of the ITS alignment 

revealed only one subgroup formed by four Kalmar strains, but this subgroup was not 

recovered by partial lcf analyses. It is interesting that a functional gene and ribosomal ITS 

rDNA phylogenetic analysis produce the same main result at the species level with 

differences being minor and limited to the lowest hierarchical clusters. A high congruence 
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of lcf and rDNA phylogenies has been shown for dinoflagellates at genus level: Valiadi et 

al. (2012) found that lcf phylogeny resembles the SSU rDNA phylogeny (Gómez et al., 

2010) for example in Alexandrium spp., Ceratium, Ceratocorys horrida Stein and P. 

reticulatum and Baker et al. (2008) found that lcf phylogeny was similar to 18S rDNA 

(Scholin et al., 1995) and LSU D1-D2 (Persich et al., 2006) phylogenies in Alexandrium 

catenella (Whedon and Kofoid) Balech and Alexandrium fundyense Balech. Lcf phylogeny 

by Valiadi et al. (2012) also closely represents the newly published luciferin binding 

protein phylogeny (Valiadi & Iglesias-Rodriguez, 2014).  

Functional genes are expected to be less conserved and evolve faster than 

neutral genetic markers as they should be under greater evolutionary pressure and therefore 

should give a better resolution for phylogenetic studies at lower taxonomic level. Lcf 

primers used in this study were chosen because they amplify the region at the beginning of 

lcf, which is more diverse than central regions and gives longer sequences than more 

conserved primers (Baker et al., 2008; Valiadi et al., 2012). Therefore, sequences produced 

by these primers should reveal most of the variation present in lcf.  Nevertheless, the 

evolution rate of the lcf marker did not resolve population-level structures in Baltic Sea A. 

ostenfeldii but was similar to ITS. Valiadi et al. (2012) suggested that lcf remains largely 

unmuted, based on their finding that lcf is conserved and still detectable among 

nonbioluminescent strains of dinoflagellates. This could be due to a number of reasons. 

One prominent explanation is that the ability to produce bioluminescence is very important 

to dinoflagellates. It has been reported that dinoflagellates allocate energy to 

bioluminescence before growth but after the ability to swim (Latz & Jeong, 1996) and 

therefore there would be only a small evolutionary pressure acting on lcf. An alternative or 

additional explanation for the observed pattern in the Baltic Sea is the generally low genetic 

diversity observed in Baltic A. ostenfeldii (Tahvanainen et al., 2012). The Baltic Sea is an 
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ecologically extreme and geologically marginal habitat, with low salinity and large 

temperature differences between seasons, resulting in low genetic diversity in many Baltic 

Sea macroorganisms (e.g. Reusch et al., 1999; Nikula & Väinölä, 2003; Olsson et al., 2011, 

2012).  

We were able to amplify lcf sequences from water samples collected along a 

transect that passed through a known bloom site of A. ostenfeldii. Presence of lcf, A. 

ostenfeldii cells and bioluminescence coincided at the majority of locations. At station 8 a 

weak bioluminescence signal was measured but lcf and A. ostenfeldii cells were not 

detected. This location is next to a strait that opens to the sea and is thus influenced by 

currents. Cell migration and currents may both have contributed to the differences in 

observations, with bioluminescence measurements carried out at night and water sampling 

activities during the day. Since only a small volume of water was analysed for lcf and A. 

ostenfeldii cells it is possible that small numbers of bioluminescent cells were present in 

situ but not included in the sample. At station 2, bioluminescence and A. ostenfeldii cells 

were found while lcf was not detected. This sample was collected outside the main bloom 

area and only a low number of A. ostenfeldii cells (120 cells l-1) were present. Therefore it 

is possible that not enough material was collected to detect lcf. Alternatively, the possibility 

of a processing issue (e.g. DNA extraction) cannot be fully excluded, despite repeat 

analysis, since lcf was detected from stations 1, 9 and 10, where cell numbers were in the 

same order of abundance (40 - 120 cells l-1). Therefore, sensitivity of lcf detection is 

considered sufficient for detection of non-bloom abundance.  

The distribution of A. ostenfeldii based on lcf and bioluminescence 

measurements reflects the distribution of A. ostenfeldii resting cysts (Hakanen et al., 2012), 

which defines the occurrence of the species in the area. The distribution of A. ostenfeldii 

based on lcf and bioluminescence measurements was found to be slightly wider than based 
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on toxin measurements (Hakanen et al., 2012). This suggests that bioluminescence is a 

more sensitive indicator for the presence of A. ostenfeldii than toxicity. Our study shows 

good agreement of lcf and bioluminescence signals. In a field study conducted in surface 

waters of the Patagonian Shelf where the presence of lcf and bioluminescence signal were 

compared, Valiadi et al. (2014) found that bioluminescence measurements comparatively 

underestimated the presence of bioluminescent dinoflagellates. This result may have been 

due to presence of different dinoflagellate species with different bioluminescent properties 

and co-occurrence of bioluminescent zooplankton. In the coastal Baltic Sea where the 

bioluminescent plankton community consists entirely of A. ostenfeldii, detecting 

bioluminescence can be considered as reliable an indicator of the presence of this 

bioluminescent dinoflagellate as detecting lcf.  

From the perspective of monitoring toxic A. ostenfeldii blooms the consistent 

presence of lcf and co-occurrence of lcf with bioluminescence suggests that 

bioluminescence can be used to reliably monitor the presence of A. ostenfeldii in the Baltic 

Sea. The optical detection of bioluminescence provides an immediate result, however it is 

limited to observing known bloom sites and to the dark period (Le Tortorec et al., 2014). 

The complementary use of optical monitoring of bioluminescence and molecular detection 

of lcf could be a promising direction for integrated monitoring of the environmental risks 

of toxic bloom-forming A. ostenfeldii in coastal areas of the Baltic Sea. Other molecular 

methods, for example species specific DNA-based molecular probe methods, DNA 

barcoding and microarrays (e.g. McCoy et al., 2013; Taylor et al., 2014; Comtet et al., 

2015) also exist and provide an effective tool for cheap and precise monitoring. In the 

Northern Baltic Sea, monitoring harmful algal blooms based on light microscopy, rDNA 

sequences or lcf, is challenging, because the coastline with its thousands of islands is vast 

as is the number of shallow bays that favor A. ostenfeldii blooms (Hakanen et al., 2012; Le 
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Tortorec et al., 2014). The link between lcf, bioluminescence and A. ostenfeldii cells 

demonstrated here points to the potential of bioluminescence observations by eye, e.g. by 

citizens, to record toxic A. ostenfeldii blooms with the spatial coverage required by the 

geography of the area.  
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Tables 
 

Table 1. Results for the presence of the luciferase gene and production of bioluminescence 

for all Alexandrium ostenfeldii strains used in this study. Strains used in phylogenetic 

analyses are given in bold. 

Origin  Phylogenetic 

group 

(Kremp et al. 

2014) 

Luciferase gene 

(detected / 

number of 

strains) 

Bioluminescence 

(detected / number 

of strains) 

Strain codes 

B
al

tic
 S

ea
 

Föglö, Åland, 

Finland 

1 10/10 10/10 AOF0905, AOF0909, AOF0915, 

AOF0919, AOF0923, AOF0930, 

AOF0938, AOF0940, AOF0957, 

AOTVA4 

Kökar, Åland, 

Finland 

1 11/11 11/11 AOK1006, AOK1007, AOK1009, 

AOK1013, AOK1014, AOK1020, 

AOK1028, AOK1032, AOK1037, 

AOK1038, AOK1045 

Sandviken, 

Åland, Finland 

1 9/9 9/9 AOS1001, AOS1002, AOS1004, 

AOS1006, AOS1011, AOS1013, 

AOS1014, AOS1017, AOS1020 

Öresund, 

Denmark 

1 1/1 1/1 K1354 

Hel, Poland 1 10/10 10/10 AOPL0902, AOPL0906, AOPL0909, 

AOPL0914, AOPL0918, AOPL0924, 

AOPL0930, AOPL0945, AOPL0961, 

AOPL0967 

Gotland, Sweden 1 10/10 9/10 AOVA0901, AOVA0903, 

AOVA0904, AOVA0906, AOVA0907, 

AOVA0910, AOVA0923, 

AOVA0924, AOVA0929, AOVA0931 
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Kalmar, Sweden 1 10/10 10/10 AOKAL0902, AOKAL0909, 

AOKAL0913, AOKAL 0916, 

AOKAL0918, AOKAL0919, 

AOKAL0923, AOKAL0925, 

AOKAL0927, AOKAL0928 

N
or

th
 S

ea
 

Lough Swilly, 

Ireland 

2 0/2 0/2 LSA06, LSE05 

Fal River, UK 2 0/2 0/2 WW516, WW517 

North Sea, 

Scotland 

6 3/3 3/3 CCAP1119/45, CCAP1119/47, 

S6P12E11 

North Sea, 

Norway 

6 1/1 1/1 NCH85 

Oslofjord, 

Norway 

6 1/1 1/1 AONOR4 

O
th

er
 

Bohai Sea, China 1 1/1 1/1 ASBHO1 

Palamos, Spain 2 2/2 0/2 IEO-VGOAMD12, IEO-VGOAM10C 

Saanich, Canada 6 1/1 1/1 AOPC1 
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Table 2. Results of the transect data for luciferase gene (lcf) presence, A. ostenfeldii cell 

numbers and bioluminescence observations (averaged over a 2-minute observation 

period). Station numbers correspond to the map of the study area (Fig. 1) 

 

Station No. Lcf detected A. ostenfeldii cells l -1 
Bioluminescence 

(pW cm-2) 

1 Yes 40 83.93 

2 No 120 68.37 

3 Yes 18 289 232.49 

4 Yes 

 

24 705 

 
271.65 

5 Yes 35 890 371.29 

6 Yes 38 089 1618.97 

7 Yes 2 800 164.37 

8 No - 177.22 

9 Yes 120 65.78 

10 Yes 40 75.35 
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Figures 
 

 

Fig 1. (A) The Finnish Archipelago Sea in the northern Baltic Sea showing the location 

of the Föglö islands in the Åland islands group. (B) Detail of the islands around the study 

site showing station numbers along the sampled transect. 
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Fig 2. Phylogenetic tree of Alexandrium ostenfeldii isolates from the Baltic Sea, the North 

Sea and Spain based on a nucleotide alignment of a partial sequence of the luciferase gene 

as derived from Bayesian inference. Node labels correspond to posterior probabilities from 

Bayesian inference (BI) and bootstrap values from maximum likelihood (ML) analyses 

shown as ML/BI. 
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Fig S1. Phylogenetic tree of Alexandrium ostenfeldii isolates from the Baltic Sea, the North 

Sea and Spain based on a nucleotide alignment of internal transcribed spacer (ITS-1 and 

ITS-2) and 5.8 rDNA sequences as derived from Bayesian inference. Node labels 

correspond to posterior probabilities from Bayesian inference (BI) and bootstrap values 

from maximum likelihood (ML) analyses shown as ML/BI. 


