115 research outputs found

    Endotracheal tube mucus as a source of airway mucus for rheological study

    Get PDF
    Muco-obstructive lung diseases (MOLDs), like cystic fibrosis and chronic obstructive pulmonary disease, affect a spectrum of subjects globally. In MOLDs, the airway mucus becomes hyperconcentrated, increasing osmotic and viscoelastic moduli and impairing mucus clearance. MOLD research requires relevant sources of healthy airway mucus for experimental manipulation and analysis. Mucus collected from endotracheal tubes (ETT) may represent such a source with benefits, e.g., in vivo production, over canonical sample types such as sputum or human bronchial epithelial (HBE) mucus. Ionic and biochemical compositions of ETT mucus from healthy human subjects were characterized and a stock of pooled ETT samples generated. Pooled ETT mucus exhibited concentration-dependent rheologic properties that agreed across spatial scales with reported individual ETT samples and HBE mucus. We suggest that the practical benefits compared with other sample types make ETT mucus potentially useful for MOLD research

    DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang

    Get PDF
    We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ∼10 Gyr) and peaking at MAB = −22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400–3500 Å) properties of the SN, finding velocity of the C III feature changes by ∼5600 km s−1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5+3.6 −2.4 × 109 M, which is more massive than the typical SLSN-I host galaxy

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    This paper has gone through internal review by the DES collaboration. It has Fermilab preprint number 19-115-AE and DES publication number 13387. We acknowledge support from EU/FP7- ERC grant 615929. RCN would like to acknowledge support from STFC grant ST/N000688/1 and the Faculty of Technology at the University of Portsmouth. LG was funded by the European Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol ´ogicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi NationalAccelerator Laboratory, theUniversity of Illinois atUrbana- Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.We acknowledge support from the Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24 −0.19, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the University of PortsmouthEuropean Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER)U.S. Department of EnergyU.S. National Science FoundationMinistry of Science and Education of SpainScience and Technology Facilities Council of the United KingdomHigher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of ChicagoCenter for Cosmology and Astro-Particle Physics at the Ohio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766 and AST-1536171.T MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2)Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physic

    Are biological systems poised at criticality?

    Full text link
    Many of life's most fascinating phenomena emerge from interactions among many elements--many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this "inverse" approach, using examples form families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised at a very special point in their parameter space--a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.Comment: 21 page

    First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation

    Get PDF
    International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01

    First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters

    Get PDF
    We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table

    Parâmetros fotossintéticos e crescimento em mudas de bertholletia excelsa e carapa guianensis em resposta a pré-aclimatação a pleno sol e estresse hídrico moderado

    Get PDF
    Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimesmoderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.A luz e a água são importantes fatores que limitam o crescimento e o desenvolvimento das plantas. O objetivo deste estudo foi avaliar os paâmetros fotossintéticos e o crescimento em mudas de Bertholletia excelsa e Carapa guianensis em resposta a pré-aclimatação à luz solar plena e estresse hídrico moderado. Foram usados seis independentes tratamentos de pré-aclimatação a pleno sol (PFS), sendo estes de (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) e 720 min (06h00-18h00)) durante 30 dias seguidos por um período de exposição a pleno sol de 120 dias durante o dia todo. Antes da PFS, as plantas foram mantidas em casa de vegetação a baixos níveis de luz (0,8 mol m-2 dia-1). O PFS de 0 min correspondeu às plantas mantidas constatemente na casa de vegetação. Cada tratamento de PFS foi submetido desde o início até o final do experimento a dois regimes hídricos, denominado de estresse hídrico moderado (MWS, potencial hidrico da folha medido antes do amanhecer (ΨL) de -500 a -700 kPa) e sem estresse hídrico (WWS , ΨL de -300 kPa, solo mantido na capacidade de campo). As plantas do tratamento MWS receberam apenas uma fração do volume de água fornecido para aquelas do tratamento WWS. No final do período de 120 dias foi avaliada a fotossíntese saturada por luz (Amax), a condutância estomática (g s), transpiração (E) e o crescimento. Amax e g s foram maiores em todas as plantas sob o tratamento de PFS. A taxa de crescimento em diâmetro e Amax foram maiores em plantas de C. guianensis submetidas à MWS. O contrário foi observado em B. excelsa. O crescimento das mudas foi maior nas plantas expostas à luz solar em 180 minutos em ambas as espécies. Entretanto, as plantas de B. excelsa foram mais sensíveis ao estresse hídrico moderado. C. guianensis foi à especie que teve melhor desempenho fotossintético e crescimento sob estresse hídrico moderado e luz solar plena. Portanto, essa espécie tem grande potencialidade para ser testada em programas de reflorestamento
    corecore