333 research outputs found

    Development of Gas Turbine Fast Mathematical Model Simulation Module for Software Complex «Electrodin» based on LabVIEW

    Get PDF
    A fast mathematical model simulation module based on LabVIEW graphical programming environment has been developed. The module will be used for gas turbine and electrical power system co-simulation, and for testing automation of gas turbine automatic control systems

    Digital Twin of the Radio Environment: A Novel Approach for Anomaly Detection in Wireless Networks

    Full text link
    The increasing relevance of resilience in wireless connectivity for Industry 4.0 stems from the growing complexity and interconnectivity of industrial systems, where a single point of failure can disrupt the entire network, leading to significant downtime and productivity losses. It is thus essential to constantly monitor the network and identify any anomaly such as a jammer. Hereby, technologies envisioned to be integrated in 6G, in particular joint communications and sensing (JCAS) and accurate indoor positioning of transmitters, open up the possibility to build a digital twin (DT) of the radio environment. This paper proposes a new approach for anomaly detection in wireless networks enabled by such a DT which allows to integrate contextual information on the network in the anomaly detection procedure. The basic approach is thereby to compare expected received signal strengths (RSSs) from the DT with measurements done by distributed sensing units (SUs). Employing simulations, different algorithms are compared regarding their ability to infer from the comparison on the presence or absence of an anomaly, particular a jammer. Overall, the feasibility of anomaly detection using the proposed approach is demonstrated which integrates in the ongoing research on employing DTs for comprehensive monitoring of wireless networks.Comment: 6 pages, 4 figure

    On generating series of finitely presented operads

    Full text link
    Given an operad P with a finite Groebner basis of relations, we study the generating functions for the dimensions of its graded components P(n). Under moderate assumptions on the relations we prove that the exponential generating function for the sequence {dim P(n)} is differential algebraic, and in fact algebraic if P is a symmetrization of a non-symmetric operad. If, in addition, the growth of the dimensions of P(n) is bounded by an exponent of n (or a polynomial of n, in the non-symmetric case) then, moreover, the ordinary generating function for the above sequence {dim P(n)} is rational. We give a number of examples of calculations and discuss conjectures about the above generating functions for more general classes of operads.Comment: Minor changes; references to recent articles by Berele and by Belov, Bokut, Rowen, and Yu are adde

    Endolithic Algae Affect Modern Coral Carbonate Morphology and Chemistry

    Get PDF
    While burial diagenetic processes of tropical corals are well investigated, current knowledge about factors initiating early diagenesis remains fragmentary. In the present study, we focus on recent Porites microatolls, growing in the intertidal zone. This growth form represents a model organism for elevated sea surface temperatures (SSTs) and provides important but rare archives for changes close to the seawater/atmosphere interface with exceptional precision on sea level reconstruction. As other coral growth forms, microatolls are prone to the colonization by endolithic green algae. In this case, the algae can facilitate earliest diagenetic alteration of the coral skeleton. Algae metabolic activity not only results in secondary coral porosity due to boring activities, but may also initiate reprecipitation of secondary aragonite within coral pore space, a process not exclusively restricted to microatoll settings. In the samples of this initial study, we quantiïŹed a mass transfer from primary to secondary aragonite of around 4% within endolithic green algae bands. Using ÎŽ 18 O, ÎŽ 13 C, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg systematics suggests that the secondary aragonite precipitation followed abiotic precipitation principles. According to their individual distribution coefïŹcients, the different isotope and element ratios showed variable sensitivity to the presence of secondary aragonite in bulk samples, with implications for microatoll-based SST reconstructions. The secondary precipitates formed on an organic template, presumably originating from endolithic green algae activity. Based on laboratory experiments with the green algae Ostreobium quekettii, we propose a conceptual model that secondary aragonite formation is potentially accelerated by an active intracellular calcium transport through the algal thallus from the location of dissolution into coral pore spaces. The combined high-resolution imaging and geochemical approach applied in this study shows that endolithic algae can possibly act as a main driver for earliest diagenesis of coral aragonite starting already during a coral’s life span

    A Statistical Social Network Model for Consumption Data in Food Webs

    Full text link
    We adapt existing statistical modeling techniques for social networks to study consumption data observed in trophic food webs. These data describe the feeding volume (non-negative) among organisms grouped into nodes, called trophic species, that form the food web. Model complexity arises due to the extensive amount of zeros in the data, as each node in the web is predator/prey to only a small number of other trophic species. Many of the zeros are regarded as structural (non-random) in the context of feeding behavior. The presence of basal prey and top predator nodes (those who never consume and those who are never consumed, with probability 1) creates additional complexity to the statistical modeling. We develop a special statistical social network model to account for such network features. The model is applied to two empirical food webs; focus is on the web for which the population size of seals is of concern to various commercial fisheries.Comment: On 2013-09-05, a revised version entitled "A Statistical Social Network Model for Consumption Data in Trophic Food Webs" was accepted for publication in the upcoming Special Issue "Statistical Methods for Ecology" in the journal Statistical Methodolog

    Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia

    Get PDF
    The ability of seagrass meadows to filter nutrients and capture and store CO2 and nutrients in the form of organic carbon (OC) and nitrogen (N) in their sediments may help to mitigate local eutrophication as well as climate change via meadow restoration and protection. This study assesses OC and N sediment stocks (top 50 cm) and sequestration rates within Danish eelgrass meadows. At four locations, eelgrass-vegetated and nearby unvegetated plots were studied in protected and exposed areas. The average OC and N sediment 50 cm stocks were 2.6 ± 0.3 kg OC m − 2 and 0.23 ± 0.01 kg N m − 2, including vegetated and unvegetated plots. In general, OC and N stocks did not differ significantly between eelgrass meadows and unvegetated sediments. Lack of accumulation of excess 210Pb suggested sediment erosion or low rates of sediment accumulation at most sites. OC accumulation rates ranged from 6 to 134 g m − 2 yr − 1 and N from 0.7 to 14 g m − 2 yr − 1. Generalized additive models showed that ≄ 80 % of the variation in sediment OC and N stocks was explained by sediment grain size, organic matter source, and hydrodynamic exposure. Long cores, dated with 210Pb, showed declining OC and N densities toward present time, suggesting long-term declines in eelgrass OC and N pools. Estimates of potential nation-wide OC and N accumulation in eelgrass sediments show that they could annually capture up to 0.7 % ± 0.5 % of CO2 emissions and 6.9 % ± 5.2 % of the total terrestrial N load

    Boron isotope systematics of cultured brachiopods : Response to acidification, vital effects and implications for palaeo-pH reconstruction

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 643084 (BASE-LiNE Earth), and was also supported by the collaborative research initiative CHARON (DFG Forschergruppe 1644- Phase II) funded by the German Research Foundation (DFG).CO 2 -induced ocean acidification and associated decrease of seawater carbonate saturation state contributed to multiple environmental crises in Earth's history, and currently poses a major threat for marine calcifying organisms. Owing to their high abundance and good preservation in the Phanerozoic geological record, brachiopods present an advantageous taxon of marine calcifiers for palaeo-proxy applications as well as studies on biological mechanism to cope with environmental change. To investigate the geochemical and physiological responses of brachiopods to prolonged low-pH conditions we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years. Our experiments demonstrate that brachiopods form their calcite shells under strong biological control, which enables them to survive and grow under low-pH conditions and even in seawater strongly undersaturated with respect to calcite (pH = 7.35, Ω cal = 0.6). Using boron isotope (ÎŽ 11 B) systematics including MC-ICP-MS as well as SIMS analyses, validated against in vivo microelectrode measurements, we show that this resilience is achieved by strict regulation of the calcifying fluid pH between the epithelial mantle and the shell. We provide a culture-based ÎŽ 11 B−pH calibration, which as a result of the internal pH regulatory mechanisms deviates from the inorganic borate ion to pH relationship, but confirms a clear yet subtle pH dependency for brachiopods. At a micro-scale level, the incorporation of boron appears to be principally driven by a physiological gradient across the shell, where the ÎŽ 11 B values of the innermost calcite record the internal calcifying fluid pH while the composition of the outermost layers is also influenced by seawater pH. These findings are of consequence to studies on biomineralisation processes, physiological adaptations as well as past climate reconstructions.Publisher PDFPeer reviewe
    • 

    corecore