71 research outputs found

    Algebraic theories of brackets and related (co)homologies

    Full text link
    A general theory of the Frolicher-Nijenhuis and Schouten-Nijenhuis brackets in the category of modules over a commutative algebra is described. Some related structures and (co)homology invariants are discussed, as well as applications to geometry.Comment: 14 pages; v2: minor correction

    Infinitely many local higher symmetries without recursion operator or master symmetry: integrability of the Foursov--Burgers system revisited

    Full text link
    We consider the Burgers-type system studied by Foursov, w_t &=& w_{xx} + 8 w w_x + (2-4\alpha)z z_x, z_t &=& (1-2\alpha)z_{xx} - 4\alpha z w_x + (4-8\alpha)w z_x - (4+8\alpha)w^2 z + (-2+4\alpha)z^3, (*) for which no recursion operator or master symmetry was known so far, and prove that the system (*) admits infinitely many local generalized symmetries that are constructed using a nonlocal {\em two-term} recursion relation rather than from a recursion operator.Comment: 10 pages, LaTeX; minor changes in terminology; some references and definitions adde

    Dedication to Gerardus F. Helminck

    Get PDF

    Secondary Calculus and the Covariant Phase Space

    Full text link
    The covariant phase space of a Lagrangian field theory is the solution space of the associated Euler-Lagrange equations. It is, in principle, a nice environment for covariant quantization of a Lagrangian field theory. Indeed, it is manifestly covariant and possesses a canonical (functional) "presymplectic structure" w (as first noticed by Zuckerman in 1986) whose degeneracy (functional) distribution is naturally interpreted as the Lie algebra of gauge transformations. We propose a fully rigorous approach to the covariant phase space in the framework of secondary calculus. In particular we describe the degeneracy distribution of w. As a byproduct we rederive the existence of a Lie bracket among gauge invariant functions on the covariant phase space.Comment: 40 pages, typos correcte

    Iterated Differential Forms II: Riemannian Geometry Revisited

    Full text link
    A natural extension of Riemannian geometry to a much wider context is presented on the basis of the iterated differential form formalism developed in math.DG/0605113 and an application to general relativity is given.Comment: 12 pages, extended version of the published note Dokl. Math. 73, n. 2 (2006) 18

    On the variational noncommutative Poisson geometry

    Get PDF
    We outline the notions and concepts of the calculus of variational multivectors within the Poisson formalism over the spaces of infinite jets of mappings from commutative (non)graded smooth manifolds to the factors of noncommutative associative algebras over the equivalence under cyclic permutations of the letters in the associative words. We state the basic properties of the variational Schouten bracket and derive an interesting criterion for (non)commutative differential operators to be Hamiltonian (and thus determine the (non)commutative Poisson structures). We place the noncommutative jet-bundle construction at hand in the context of the quantum string theory.Comment: Proc. Int. workshop SQS'11 `Supersymmetry and Quantum Symmetries' (July 18-23, 2011; JINR Dubna, Russia), 4 page

    Geometry of jet spaces and integrable systems

    Full text link
    An overview of some recent results on the geometry of partial differential equations in application to integrable systems is given. Lagrangian and Hamiltonian formalism both in the free case (on the space of infinite jets) and with constraints (on a PDE) are discussed. Analogs of tangent and cotangent bundles to a differential equation are introduced and the variational Schouten bracket is defined. General theoretical constructions are illustrated by a series of examples.Comment: 54 pages; v2-v6 : minor correction

    A unified approach to computation of integrable structures

    Full text link
    We expose (without proofs) a unified computational approach to integrable structures (including recursion, Hamiltonian, and symplectic operators) based on geometrical theory of partial differential equations. We adopt a coordinate based approach and aim to provide a tutorial to the computations.Comment: 19 pages, based on a talk on the SPT 2011 conference, http://www.sptspt.it/spt2011/ ; v2, v3: minor correction
    • …
    corecore