315 research outputs found

    Spencer Operator and Applications: From Continuum Mechanics to Mathematical physics

    Get PDF
    The Spencer operator, introduced by D.C. Spencer fifty years ago, is rarely used in mathematics today and, up to our knowledge, has never been used in engineering applications or mathematical physics. The main purpose of this paper, an extended version of a lecture at the second workshop on Differential Equations by Algebraic Methods (DEAM2, february 9-11, 2011, Linz, Austria) is to prove that the use of the Spencer operator constitutes the common secret of the three following famous books published about at the same time in the beginning of the last century, though they do not seem to have anything in common at first sight as they are successively dealing with elasticity theory, commutative algebra, electromagnetism and general relativity: (C) E. and F. COSSERAT: "Th\'eorie des Corps D\'eformables", Hermann, Paris, 1909. (M) F.S. MACAULAY: "The Algebraic Theory of Modular Systems", Cambridge University Press, 1916. (W) H. WEYL: "Space, Time, Matter", Springer, Berlin, 1918 (1922, 1958; Dover, 1952). Meanwhile, we shall point out the importance of (M) for studying control identifiability and of (C)+(W) for the group theoretical unification of finite elements in engineering sciences, recovering in a purely mathematical way well known field-matter coupling phenomena (piezzoelectricity, photoelasticity, streaming birefringence, viscosity, ...). As a byproduct and though disturbing it could be, we shall prove that these unavoidable new diferential and homological methods contradict the mathematical foundations of both engineering (continuum mechanics,electromagnetism) and mathematical (gauge theory, general relativity) physics.Comment: Though a few of the results presented are proved in the recent references provided, the way they are combined with others and patched together around the three books quoted is new. In view of the importance of the full paper, the present version is only a summary of the definitive version to appear later on. Finally, the reader must not forget that "each formula" appearing in this new general framework has been used explicitly or implicitly in (C), (M) and (W) for a mechanical, mathematical or physical purpos

    Airy, Beltrami, Maxwell, Morera, Einstein and Lanczos potentials revisited

    Get PDF
    The main purpose of this paper is to revisit the well known potentials, called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) and G. Morera (1892) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949,1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the n2(n2 -- 1)/12 components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed in elasticity theory is equal to n(n -- 1)/2 for any minimal parametrization. Meanwhile, we can provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today. The example of relativistic continuum mechanics with n = 4 is provided in order to prove that it could be strictly impossible to obtain such results without using the above methods. We also revisit the possibility (Maxwell equations of electromag- netism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various other equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of elasticity theory and mathematical physics, it is written in a rather self-contained way

    Clausius/Cosserat/Maxwell/Weyl Equations: The Virial Theorem Revisited

    Get PDF
    In 1870, R. Clausius found the virial theorem which amounts to introduce the trace of the stress tensor when studying the foundations of thermodynamics, as a way to relate the absolute temperature of an ideal gas to the mean kinetic energy of its molecules. In 1901, H. Poincar{\'e} introduced a duality principle in analytical mechanics in order to study lagrangians invariant under the action of a Lie group of transformations. In 1909, the brothers E. and F. Cosserat discovered another approach for studying the same problem though using quite different equations. In 1916, H. Weyl considered again the same problem for the conformal group of transformations, obtaining at the same time the Maxwell equations and an additional specific equation also involving the trace of the impulsion-energy tensor. Finally, having in mind the space-time formulation of electromagnetism and the Maurer-Cartan equations for Lie groups, gauge theory has been created by C.N. Yang and R.L. Mills in 1954 as a way to introduce in physics the differential geometric methods available at that time, independently of any group action, contrary to all the previous approaches. The main purpose of this paper is to revisit the mathematical foundations of thermodynamics and gauge theory by using new differential geometric methods coming from the formal theory of systems of partial differential equations and Lie pseudogroups, mostly developped by D.C Spencer and coworkers around 1970. In particular, we justify and extend the virial theorem, showing that the Clausius/Cosserat/Maxwell/Weyl equations are nothing else but the formal adjoint of the Spencer operator appearing in the canonical Spencer sequence for the conformal group of space-time and are thus totally dependent on the group action. The duality principle also appeals to the formal adjoint of a linear differential operator used in differential geometry and to the extension modules used in homological algebra.Comment: This paper must be published under the title "From Thermodynamics to Gauge Theory: The Viral Theorem Revisited" as a chapter of a forthcoming book "Gauge Theory and Differential Geometry" published by Nova Editors

    Macaulay inverse systems revisited

    Get PDF
    Since its original publication in 1916 under the title "The Algebraic Theory of Modular Systems", the book by F. S. Macaulay has attracted a lot of scientists with a view towards pure mathematics (D. Eisenbud,...) or applications to control theory (U. Oberst,...).However, a carefull examination of the quotations clearly shows that people have hardly been looking at the last chapter dealing with the so-called "inverse systems", unless in very particular situations. The purpose of this paper is to provide for the first time the full explanation of this chapter within the framework of the formal theory of systems of partial differential equations (Spencer operator on sections, involution,...) and its algebraic counterpart now called "algebraic analysis" (commutative and homological algebra, differential modules,...). Many explicit examples are fully treated and hints are given towards the way to work out computer algebra packages.Comment: From a lecture at the International Conference : Application of Computer Algebra (ACA 2008) july 2008, RISC, LINZ, AUSTRI
    • 

    corecore