949 research outputs found

    Zeitreihen troposphärischer Spurengase abgeleitet aus bodengebundenen FTIR-Messungen

    Get PDF

    IT-basiertes Audit-Management in der Praxis

    Get PDF
    Mittels Software-Einsatz kann das Audit-Management unterstützt werden. Insbesondere durch die Anbindung an ein ERP-System können Audit-Prozesse effizienter werden, indem Kennzahlen vom ERP System direkt in die Audit-Auswertung einfließen

    Rotating Boson Stars and Q-Balls II: Negative Parity and Ergoregions

    Full text link
    We construct axially symmetric, rotating boson stars with positive and negative parity. Their flat space limits represent spinning Q-balls. QQ-balls and boson stars exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the mass and charge of boson stars. We analyze the properties of these solutions. In particular, we discuss the presence of ergoregions in boson stars, and determine their domains of existence.Comment: 20 pages, 17 figure

    \u3ci\u3eChlorella\u3c/i\u3e Viruses Evoke a Rapid Release of K\u3csup\u3e+\u3c/sup\u3e from Host Cells During the Early Phase of Infection

    Get PDF
    Infection of Chlorella NC64A cells by PBCV-1 produces a rapid depolarization of the host probably by incorporation of a viral-encoded K+ channel (Kcv) into the host membrane. To examine the effect of an elevated conductance, we monitored the virus-stimulated efflux of K+ from the Chlorella cells. The results indicate that all 8 Chlorella viruses tested evoked a host specific K+ efflux with a concomitant decrease in the intracellular K+. This K+ efflux is partially reduced by blockers of the Kcv channel. Qualitatively these results support the hypothesis that depolarization and K+ efflux are at least partially mediated by Kcv. The virus-triggered K+ efflux occurs in the same time frame as host cell wall degradation and ejection of viral DNA. Therefore, it is reasonable to postulate that loss of K+ and associated water fluxes from the host lower the pressure barrier to aid ejection of DNA from the virus particles into the host

    Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments

    Get PDF
    This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models.Peer reviewe

    Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Full text link
    The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements

    Advanced exploitation of ground-based Fourier transform infrared observations for tropospheric studies over Europe: achievements of the UFTIR project

    Full text link
    Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including information about their vertical distributions in the troposphere and the stratosphere. Such observations have regularly been made since many years as a contribution to the NDSC (Network for the Detection of Stratospheric Change). They are the only ground-based remote sensing observations available nowadays that carry information about key atmospheric trace species in the free troposphere, among which the most important greenhouse gases. The European UFTIR project (Time series of Upper Free Troposphere observations from a European ground-based FTIR network, http://www.nilu.no/uftir) has focused on maximizing the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3,HCFC-22, and CO and C2H6, respectively). The UFTIR network includes six NDSC stations in Western Europe, covering the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances of the abovementioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric and total burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series have been made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model, and in particular, to optimize emission estimates that are used as inputs to the model simulations, and to explain the observed trends. The final results of the project will be presented, and ways to proceed will be discussed

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore