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Abstract. This paper describes the statistical analysis of an-
nual trends in long term datasets of greenhouse gas measure-
ments taken over ten or more years. The analysis technique
employs a bootstrap resampling method to determine both
the long-term and intra-annual variability of the datasets, to-
gether with the uncertainties on the trend values. The method
has been applied to data from a European network of ground-
based solar FTIR instruments to determine the trends in the
tropospheric, stratospheric and total columns of ozone, ni-
trous oxide, carbon monoxide, methane, ethane and HCFC-
22. The suitability of the method has been demonstrated
through statistical validation of the technique, and compar-
ison with ground-based in-situ measurements and 3-D atmo-
spheric models.

1 Introduction

Global climate change is one of the most important environ-
mental issues facing the world today. A key element of this
issue is understanding the atmospheric behaviour of radia-
tively active gases (direct greenhouse gases), and also gases
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involved in the chemical production of greenhouse gases (in-
direct greenhouse gases). Long-term measurements of such
gases provide the experimental data to study the evolution
of these gases and the changing sources and sinks. These
data are often expressed in terms of an annual trend in the
amount of a particular gas. In order for these trend results to
be used appropriately it is vital that the uncertainty associ-
ated with the trend value is properly quantified. An accurate
determination of the trend value is challenging due to influ-
ence of large seasonal variations and other effects reflected
in the data (Oltmans et al., 1998).

This paper describes the development and implementation
of a trend analysis method to determine the annual trend
and associated uncertainties, based on a statistical model that
makes minimal assumptions about uncertainty distributions
associated with the raw data. The method has been applied to
measurements of direct and indirect greenhouse gases mea-
sured by a network of six ground-based solar Fourier Trans-
form Infrared (FTIR) sites across Europe. The outputs from
the analysis are the annual trends in the total, tropospheric
and stratospheric amount of each gas at each of the sites and
their associated uncertainties.

Section 2, below, gives a short description of the measure-
ment network and the derivation of tropospheric and strato-
spheric columns from the data. The trend analysis method is
described in Sect. 3, while Sect. 4 covers the validation of the
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Table 1. The UFTIR Network of ground-based solar FTIR sites.

Site Latitude Longitude Altitude Data
(km) Period

Ny Ålesund 79◦ N 12◦ E 0.02 1994–2004
Kiruna 68◦ N 20◦ E 0.4 1996–2004
Harestua 60◦ N 11◦ E 0.6 1995–2004
Zugspitze 47◦ N 11◦ E 2.96 1995–2004
Jungfraujoch 46.5◦ N 8◦ E 3.58 1995–2004
Izana 28◦ N 16.5◦ W 2.36 1999–2004

method. Section 5 gives the main results of the trend anal-
ysis, including comparison with in-situ trend measurements
and atmospheric model results. The conclusions are given in
Sect. 6.

2 The UFTIR remote sensing network

The work described in this paper was carried out as part of an
EC Project on “Time Series of Upper Free Troposphere Ob-
servations from a European Ground-based FTIR Network” –
UFTIR (www.nilu.no/uftir) (De Mazìere et al., 2005). The
UFTIR remote sensing network comprises six sites across
Europe making solar absorption measurements using high-
resolution FTIR spectrometers. Table 1 gives the location
and altitude of these sites, which range in latitude from 28◦ N
(Izana, Tenerife) to 79◦ N (Ny Ålesund, Spitzbergen), to-
gether with the general period over which data were available
for the trend analysis. These sites have been making total col-
umn measurements of a range of atmospheric gases for many
years, and the results from these measurements are held on
the database of the Network for the Detection of Atmo-
spheric Composition Change (www.ndacc.org, formerly the
Network for the Detection of Stratospheric Change, NDSC).
The work within the UFTIR project has focussed on the
derivation of vertical profiles of a number of key tropospheric
gases – ozone, nitrous oxide, carbon monoxide, methane,
ethane and HCFC-22. The data have been produced from
a combination of re-analysis of previous data, and new mea-
surements made during the UFTIR project, giving a series of
datasets that typically cover the period from the beginning of
1995 to the end of 2004. A significant amount of effort was
made during the course of the project to harmonise the data
analysis procedures used by each group (De Mazière et al.,
2005).

The outputs of the FTIR measurements are time series of
vertical profiles for each species with a profile for each day
on which a measurement was made. Where more than one
measurement was made on a particular day, the daily mean
profile has been taken. The vertical profiles of the gases are
determined from an optimal estimation method which gen-
erates a model atmosphere that best reproduces the observed
solar absorption. The model atmosphere consists of a se-

ries of layers typically 1 to 2 km thick. The temperature and
pressure in each layer is estimated and an a priori “partial
column” of target gas in the layer (in units of molecules per
m2, i.e. the number of molecules in a one square metre ver-
tical column through the layer) assumed. The a priori gas
distribution is adjusted to give the best match between mea-
sured and modelled absorption given the covariance charac-
teristics of the various parameters. The result is an optimal
estimate of the vertical profile of the gas made up of the par-
tial column amounts in each layer. The total column amount
(also in units of molecules per m2) is the summation of the
partial columns. The exact details of the layer heights vary
between species and sites. In this work the total column is
taken as the summation of the partial columns up to 50 km
(or nearest available layer boundary) in order to give consis-
tency between all sites and species. More details of the FTIR
analysis methods are given by De Mazière et al. (2005) and
the references therein.

The work described in this paper addresses the determi-
nation of the trends and the associated uncertainties for the
UFTIR datasets, with a focus on calculating separate tropo-
spheric and stratospheric trends for each species.

2.1 Tropospheric column determination

Since one of the primary objectives for the analysis was
to determine separate tropospheric and stratospheric trends
for the FTIR datasets, a key issue was how to quantify the
tropospheric content of the atmospheric profile results. It
was decided that the best option was to use tropopause al-
titude information from the NCEP meteorological database
to determine appropriate tropopause heights and variabilities
for each site. The average tropopause height ranged from
10.14 km at NyÅlesund to 14.85 km at Izana. The (1σ ) vari-
ability of the tropopause was between 1.10 km (at the Jun-
fraujoch) and 1.55 km (at Izana).

The tropopause information was then used to produce a
weighting function to apply to the partial column profile data.
The tropospheric weighting function,W , is a sigmoid func-
tion of altitude of the form:

W(z) = 1 − 1/[1 + exp{ − a(z − zT )}] (1)

wherez = mean layer altitude,zT = mean tropopause alti-
tude, anda = e/(standard deviation of tropopause altitudes).

The weighting function acts to give values of approxi-
mately 1 well below the tropopause and approximately 0 well
above, with a transition from 1 to 0 around the tropopause
with a vertical extent governed by the variability of the
tropopause height at that site. The tropospheric partial col-
umn was then determined by integrating the weighted pro-
file. The stratospheric partial column was then calculated as
the difference between the total column and the tropospheric
partial column. Separate trends were then calculated for the
total, tropospheric and stratospheric columns.
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3 Trend analysis method

3.1 Trend analysis requirements

The objective of the trend analysis method is to assess
whether there are statistically significant long-term trends in
the various datasets. The most straightforward approach to
determining a trend from data is to fit a straight line to the
data, using a least squares criterion for example. The gra-
dient of the fitted line can then be used to indicate the long
term trend. In order to associate an uncertainty or confidence
limits with the gradient it is necessary to estimate the contri-
bution of random effects in the data to the likely variation in
the slope that would be computed if the data were gathered a
number of times over identical conditions. If the random ef-
fects can be assumed to be independently and identically nor-
mally distributed, then it is straightforward to show that the
gradient parameter is also associated with a normal (Gaus-
sian) distribution, allowing confidence limits to be calculated
easily. However, the FTIR measurements show significant
intra-annual effects so that the likely departure of the data
points from a straight line fit has a significant time-dependent
correlation, and hence is not independent. Secondly, even for
measurements at the same site at the same period, the ob-
served distribution of measurements can have significantly
non-normal features. In order to determine valid estimates of
the trends, it is necessary to take into account both the intra-
annual variability and the potential non-normality of the dis-
tributions associated with the measurement data.

The approach described in this paper augments the basic
linear trend model with an intra-annual function in order to
represent the intra-annual effects, and uses least-squares re-
gression in conjunction with a bootstrap resampling method
in order to determine confidence limits associated with the
trend estimates. The advantage of the approach is that it uses
well-known least squares techniques without requiring an as-
sumption of normality at the same time as accounting for the
significant intra-annual effects present in the data.

3.2 Intra-annual model

Since the intra-annual (seasonal) variability is of a periodic
nature, it is appropriate to model these effects in terms of a
Fourier series,V :

V (t, b)=b0+b1 cos 2πt+b2 sin 2πt+b3 cos 4πt+b4 sin 4πt+ . . . (2)

wheret is measured in years, andb0 to bn are the parameters
of the Fourier series contained in the vectorb. The total vari-
ation in measurements due to the trend and the intra-annual
effects is then modelled by a function,F :

F(t, a, b) = at + V (t, b) (3)

wherea is the annual trend in the data. This model captures
the underlying periodicity of the data and reduces the impact
of sparse data. It also enables regular gaps in the data series,

such as those during the winter months in high latitude sites,
to be accommodated without causing discontinuities in the
intra annual function. See Sect. 6.2 for examples of the fitted
intra-annual models.

It is recognised that, with the relatively simple intra-annual
model used here, the residuals are unlikely to be fully inde-
pendent. The trend data presented here result from a com-
mon algorithm with a compact set of coefficients across the
full set of UFTIR species and sites to give an overview of the
basic trend behaviours. With some minor modification, the
approach described could be extended to accommodate more
complex models that, for example, capture atmospheric pro-
cesses such as the QBO and solar cycles, or include non-
linear trend behaviours, and thereby reducing any depen-
dence within the residuals.

3.3 Bootstrap resampling

The technique of bootstrap resampling enables non-normally
distributed data to be treated robustly (Gatz and Smith, Part
II, 1995). It is based on the idea that the distribution asso-
ciated with the random effects reflected in the data is best
represented by the residual deviations of a model fit to the
data. The appropriateness of the bootstrap resampling tech-
nique to measuring trends in air quality data sets has already
been demonstrated (Cox et al., 2002). In this technique, the
model functionF(t, a, b) is fitted to the data(ti, Mi) to de-
termine estimatesa0 andb0 that minimise

m∑
i=1

(Mi − F(ti, a, b))2 (4)

with respect toa and b. Since the functionF is a linear
function of the parametersa andb, these estimates can be
found using standard linear least squares methods (Lawson
and Hansen, 1974).

Once the initial fit has been determined, the residual devi-
ations

Ri,0 = Mi − F(ti, a0, b0) (5)

are then regarded as a discrete representation of the distribu-
tion associated with the random effects reflected in the data.
GivenRi,q sampled at random from the set

{
Ri,0

}
(with re-

placement),i=1, . . . , m, a new data set
{
(ti, Mi,q)

}
is gen-

erated with :

Mi,q = F(ti, a0, b0) + Ri,q (6)

The model is refitted to this data set to give parameter esti-
matesaq andbq .

This procedure is repeated a large number of times,
q=1, . . . , N , to generate the 1 byN vectorA containing the
set of trend results

{
aq

}
and then by N matrix B with the

set of intra-annual variability parameters
{
bq

}
. Each row of

these matrices contains a sample from the distribution for the
corresponding parameter, and therefore provides a (discrete)
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Table 2. Precision of the confidence limits for the trends (as % of
2000 value) in the Jungfraujoch tropospheric column data.

Species Lower limit of estimated trend Upper limit of estimated trend
Value precision range Value precision range

CH4 0.076 0.075 to 0.076 0.147 0.146 to 0.148
C2H6 −1.73 −1.74 to−1.72 −0.944 −0.958 to−0.927
CO −0.545 −0.554 to−0.537 0.031 0.042 to 0.025
HCFC-22 2.29 2.28 to 2.30 2.66 2.66 to 2.67
N2O 0.203 0.202 to 0.204 0.272 0.271 to 0.273
O3 −0.288 −0.295 to−0.281 0.825 0.783 to 0.878

approximation to this distribution. Since the elements inA

form a sample from the distribution for the trend parame-
ters, the 2.5 and 97.5 percentiles of this empirical distribution
specify a 95% confidence interval associated with the value
of the trend. Using standard matrix factorisation techniques,
it is possible to organise the computation so that determina-
tion of the addition parameter fits can be done efficiently.

This method allows the uncertainty associated with any of
the model parameters to be evaluated without making any
assumptions about the statistical distribution of the residu-
als. It can therefore be applied generally to results for dif-
ferent species and sites. It can also be extended to combi-
nations of parameters, and an example of this is described in
Sect. 5.3, where methods for aggregating the results obtained
from many sites are discussed.

4 Validation of analysis method

As in many areas of data analysis, tests must be carried out
in order to demonstrate that the results obtained are valid and
that the model chosen provides a satisfactory explanation of
the data. In this application, it is necessary to choose an ap-
propriate number of terms in the intra-annual model (i.e. the
order of the Fourier series). The method used to evaluate
the confidence intervals associated with the estimates relies
on bootstrap resampling from the distribution of residual er-
rors. This approach requires some further demonstration that
there is no significant bias introduced and that the confidence
intervals are reliable.

In addition to the statistical validation of the model, the
results of the trend analysis of the data from the UFTIR sites
can be compared to the results of ground-based in-situ moni-
toring networks, and the output from atmospheric models, to
give confidence that similar long-term behaviour is seen in
these different datasets.

4.1 Number of factors in the intra-annual model

The choice of the number of terms in the Fourier series has
to balance the need to determine a faithful representation
of the underlying periodic behaviour with that of avoiding
over-fitting the data. An investigation was carried out to as-

sess the appropriate order for the Fourier series by looking
at the root-mean-square (RMS) residuals for different orders
for each of the UFTIR species. As the order is increased the
RMS is calculated. The point at which the RMS value shows
no significant reduction usually represents a good balance
between faithfulness and economy of representation. This
study showed that a 3rd order series with a total of 7 co-
efficients (a constant and 3 sine and 3 cosine components)
provided the best overall representation of the typical intra-
annual variability without over-fitting the data.

4.2 Bias

It is possible for a bootstrap resampling process to introduce
biased confidence intervals. Efron and Tibshirani (1993) de-
scribe how any bias in the analysis may be quantified and,
if it is large, how bias-corrected intervals may be estimated.
As shown by Efron and Tibshirani (1993), the bias correc-
tion, z0, for any statistic is given byz0=C−1(r), whereC−1

indicates the inverse function of the standard normal cumula-
tive distribution function andr is the proportion of bootstrap
resample values less than the original estimate. A value of
r=1/2, givingz0=0, implies that there is no bias.

When the bias check is applied to the bootstrap resample
values of the trend estimated for each of the species and each
of the sites, the values ofr are all close to one half, ranging
from 0.43 to 0.54 scattered (apparently) randomly about one
half, with a mean bias of 0.49. It can therefore be concluded
that the use of the bootstrap resampling method is not intro-
ducing significant bias, and a bias correction is not necessary.

4.3 Reliability of confidence limits

The bootstrap resampling method has been used to estimate
the non-parametric 95% confidence intervals associated with
the underlying trends. However, it is necessary to assess the
level of confidence that can reasonably be placed on these
intervals for the finite numberN of resamplings (N=5000
in our case) used. Berthouex and Brown (1994, p. 68) state
that the precision of the quantiles estimated in the manner
used here decreases rapidly as the estimates move towards
the extreme tails of the distribution. They provide formulae
for quantifying this precision, as follows. Letp denote the
fractional quantile of interest (0.025 and 0.975 in our case).
Then the 95% confidence intervals associated with thepth
quantile are (for a large sample, as in our case):[

p(N + 1)−1.96Np(1−p)1/2, p(N+1)+1.96Np(1−p)1/2
]

(7)

The corresponding values of the statistic of interest (the
trend in our case) are then obtained immediately from the
corresponding values in the empirical error distribution.

Table 2 shows an example of the results of the confidence
limit precision. In this case they are calculated for the tropo-
spheric partial column trends from the Jungfraujoch dataset
as a percentage of the average value in 2000. The table gives
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Figure 1. Examples of measured (blue crosses) and fitted (red triangles) time series of 
vertical column amount (in molecules.m-2) including the underlying trend (red line).   
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Fig. 1. Examples of measured (blue crosses) and fitted (red triangles) time series of vertical column amount (in molecules m−2) including
the underlying trend (red line).
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the lower (2.5% quantile) and upper (97.5% quantile) con-
fidence limits for each species, together with the associated
precision range calculated using Eq. (7).

The results shown in Table 2 indicate that the overall con-
fidence intervals are not affected significantly when this “ad-
ditional” uncertainty is included. We can therefore taken the
original 95% confidence interval as a reasonable estimate of
the uncertainty in the trend value.

5 Results of trend analysis

5.1 Time series and intra-annual variability

The output of the bootstrap resampling analysis produces an
estimate of the average trend and intra-annual variability pa-
rameters for a given dataset. The first step in the analysis of
the results was to see how well these parameters captured the
variability and trends in the measurements. The five panels
of Fig. 1 show a series of examples of the measured time se-
ries, the results of the model function determination, and the
underlying trend. The top two panels are the time series for
tropospheric ethane for Harestua and NyÅlesund, showing
that the Fourier series provides a good fit for species with a
large variability even when there are regular gaps in the data,
as for NyÅlesund where measurements are not possible dur-
ing the Arctic winter. The third and fourth panel show the to-
tal column ozone time series for Kiruna and Izana, showing
that the general structure is captured well even if the intra-
annual behaviour is very different from site to site. The fi-
nal panel shows that the method is equally appropriate in
the cases where there is little intra-annual variability as in
this example of tropospheric nitrous oxide measured at the
Jungfraujoch.

In summary, the results shown in Fig. 1 demonstrate
the suitability of the 3rd order Fourier series, discussed in
Sect. 4.1, in capturing the range of intra-annual variability in
the various datasets.

5.2 Trend results from individual sites

The null hypothesis to be tested for each analysis is that
“there is no underlying straight-line trend over the time span
of the data”, i.e. the gradient of the underlying long-term
trend in the regression model is zero. The sampling distribu-
tion of the gradient of the underlying straight-line trend term
is determined empirically using bootstrap resampling. If the
95% confidence interval associated with the gradient, com-
puted from this empirical distribution, does not contain zero
then, in a formal statistical sense, there is reason to doubt the
null hypothesis.

Table 3 shows the annual trends in the total, tropospheric,
and stratospheric columns for each species and site, together
with the associated uncertainties based on the 95% confi-
dence limits of the bootstrap resampling. The bootstrap

method provides separate estimates of the positive and neg-
ative uncertainties, however, in these analyses the differ-
ence between the magnitude of these uncertainties were very
small. Therefore, for reasons of clarity, the uncertainty val-
ues given in Table 3 are the mean magnitude of the positive
and negative uncertainties. Also shown are the site latitudes
and altitudes. All trends are reported as a percentage of the
average value in the year 2000 for that particular parame-
ter. Those annual trends shown in bold identify those cases
where the confidence interval does not contain zero, and the
null hypothesis is not met, i.e. it indicates those cases where
there is a statistically significant (positive or negative) trend.

For comparative purposes the 95% confidence intervals as-
sociated with the estimates in Table 3 were also calculated
under the (untested) assumption that Gaussian statistics ap-
ply. In most cases these were comparable to the bootstrap re-
sampled results. A valid bootstrap approach can be expected
to provide reliable confidence intervals that may be smaller
than or greater than those obtained under the assumption that
Gaussian statistics apply. Whether the intervals are smaller
or greater depends on the nature of the sampling distribution,
which the bootstrap resampling method estimates in an unbi-
ased way. One particular point is that the use of the bootstrap
technique is designed to accommodate outliers but, at the
same time, provide estimates comparable with least squares
estimates when a Gaussian model is appropriate. In this way,
the bootstrap method gives a suitable generalisation of a stan-
dard approach that provides an important advantage in data
of this type where outliers may be an issue.We concluded
that our approach is valid because of the careful validation
carried out on the results.

5.3 Estimating combined trends from all sites

In this section we aim to consider how the results obtained for
each site can be aggregated to evaluate the long-term trend
over the whole network. There are many ways of combining
the results from all six sites to obtain representative values
for the whole network. In this paper, the selected approach is
to take the mean of the individual site values. Computing this
statistic is straightforward, but standard approaches to evalu-
ating the associated uncertainties can be misleading because
only a small number of data points are available – six in this
case. We show here how bootstrap resampling can be used to
overcome this problem (Efron, 1982; Efron and Tibshirani,
1993).

As a result of the calculations described earlier, for each of
thep sites, a row vector of lengthN , that describes the sam-
pling distribution of the gradient in ozone concentration was
calculated. These vectors can be arranged into a singlep by
N matrix,G, that contains allN (=5000) bootstrap estimates
from all six sites.

This array of bootstrap estimates can form the basis for
estimating the confidence interval associated with any esti-
mator formed by taking a function of the trends – in this case

Atmos. Chem. Phys., 8, 6719–6727, 2008 www.atmos-chem-phys.net/8/6719/2008/
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Table 3. Annual trend results for UFTIR measurements.

Site Latitude Altitude Annual Trend in Total Column (as % of 2000 value)
(km) CH4 C2H6 CO HCFC-22 N2O O3

Ny Ålesund 79◦ N 0.02 0.14 (±0.08) −0.76 (±0.54) −0.58 (±0.69) 2.89 (±0.84) 0.33 (±0.16) 0.93 (±0.65)
Kiruna 68◦ N 0.4 0.35 (±0.08) −0.63 (±0.37) −0.12 (±0.38) 4.71 (±0.25) 0.43 (±0.10) 0.76 (±0.39)
Harestua 60◦ N 0.6 0.40 (±0.06) −0.65 (±0.32) −0.14 (±0.25) 4.23 (±0.15) 0.46 (±0.08) 0.04 (±0.42)
Zugspitze 47◦ N 2.96 0.12 (±0.05) −1.14 (±0.60) −0.10 (±0.46) 2.57 (±0.79) 0.12 (±0.06) 0.22 (±0.30)
Jungfraujoch 47◦ N 3.58 0.17 (±0.03) −1.05 (±0.35) −0.31 (±0.25) 2.68 (±0.16) 0.22 (±0.04) 0.41 (±0.21)
Izana 28◦ N 2.36 0.14 (±0.09) 0.00 (±0.92) 1.70 (±0.41) 3.64 (±0.24) 0.34 (±0.09) 0.05 (±0.31)

Site Latitude Altitude Annual Trend in Tropospheric Column (as % of 2000 value)
(km) CH4 C2H6 CO HCFC-22 N2O O3

Ny Ålesund 79◦ N 0.02 0.08 (±0.08) −0.74 (±0.54) −0.62 (±0.72) 2.68 (±1.10) 0.35 (±0.22) 0.26 (±0.99)
Kiruna 68◦ N 0.4 0.11 (±0.06) −0.75 (±0.38) −0.21 (±0.37) 4.67 (±0.24) 0.26 (±0.07) 0.22 (±0.58)
Harestua 60◦ N 0.6 0.33 (±0.05) −0.72 (±0.36) −0.13 (±0.28) 4.82 (±0.18) 0.37 (±0.07) −1.05 (±0.65)
Zugspitze 47◦ N 2.96 0.17 (±0.05) −1.09 (±0.62) −0.12 (±0.53) 1.76 (±0.81) 0.18 (±0.06) −0.14 (±0.76)
Jungfraujoch 47◦ N 3.58 0.11 (±0.04) −1.34 (±0.39) −0.25 (±0.29) 2.48 (±0.19) 0.24 (±0.03) 0.26 (±0.56)
Izana 28◦ N 2.36 −0.26 (±0.09) 0.09 (±0.95) 1.60 (±0.43) 3.62 (±0.24) 0.07 (±0.08) −0.21 (±1.10)

Site Latitude Altitude Annual Trend in Stratospheric Column (as % of 2000 value)
(km) CH4 C2H6 CO HCFC-22 N2O O3

Ny Ålesund 79◦ N 0.02 0.14 (±0.08) −3.31 (±1.31) −0.22 (±0.97) 4.10 (±1.16) 0.26 (±0.35) 1.03 (±0.66)
Kiruna 68◦ N 0.4 0.35 (±0.08) 0.56 (±1.05) 0.47 (±0.85) 4.82 (±0.28) 0.90 (±0.30) 0.81 (±0.40)
Harestua 60◦ N 0.6 0.71 (±0.24) 0.43 (±0.58) −0.13 (±0.50) 1.97 (±0.23) 0.83 (±0.33) 0.19 (±0.42)
Zugspitze 47◦ N 2.96 0.12 (±0.05) −1.71 (±0.58) 0.04 (±0.30) 5.15 (±0.83) −0.05 (±0.20) 0.27 (±0.30)
Jungfraujoch 47◦ N 3.58 0.17 (±0.03) −0.70 (±0.33) −0.37 (±0.28) 2.88 (±0.14) 0.20 (±0.05) 0.42 (±0.20)
Izana 28◦ N 2.36 0.14 (±0.09) −1.11 (±1.40) 1.41 (±0.33) 3.73 (±0.26) 1.42 (±0.33) 0.07 (±0.31)

the arithmetic mean. For a specific estimator, we form its
value for each column of the matrixG, (i.e. for each boot-
strap sample). The result is a 1 byN matrix whose elements
estimate the sampling distribution for that estimator. The 2.5
and 97.5 percentiles of this empirical distribution specify a
95% confidence interval associated with the value of the es-
timator. Figure 2 shows the combined trend values for the
total, tropospheric and stratospheric columns for each of the
UFTIR species. The error bars on each trend show the asso-
ciated 95% confidence intervals obtained from the estimated
sampling distribution.

The results shown in Fig. 2 can be taken as estimates of
the trends for each species over a large spatial scale. These
results are in good agreement with the behaviour predicted by
a model of the atmosphere – see Sect. 6.5. The results of the
combined trend behaviour are also in good agreement with
the trends determined by long term ground level monitoring.
For example:

– the measured value for the tropospheric N2O trend
of 0.245 (±0.044)%/yr compares to a global mean
rate of 0.25%/yr determined by the AGAGE and
NOAA/CMDL network results (WMO, 2003).

– the measured tropospheric HCFC-22 trend of
3.18(±0.24)%/yr can be compared to the GC/MS
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Figure 2. Total column, tropospheric and stratospheric trends for each species 
combined over all sites. 
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Fig. 2. Total column, tropospheric and stratospheric trends for each
species combined over all sites.

measurements from the AGAGE site at Mace Head in
Ireland (53◦ N) which give a growth rate of 3.02%/yr
for the period 1999–2003.

5.4 Comparison with the CTM model

An alternative approach to looking at the combination of
results from the different sites is to compare the measured
trends to those predicted by 3-D atmospheric models. The
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Figure 3 Comparison between measured and modelled trends in A) tropospheric and 
B) stratospheric ozone for each UFTIR site. 
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Fig. 3. Comparison between measured and modelled trends in(a)
tropospheric and(b) stratospheric ozone for each UFTIR site.

advantage of this method is that it enables systematic differ-
ences in the behaviour at different sites (and latitudes) to be
taken into account, and it also provides a useful validation
tool for the long-term behaviour of the models themselves.

The model used within the UFTIR project was the Oslo
CTM2 model developed within the Department of Geo-
sciences at the University of Oslo (Isaksen et al., 2005;
Gauss et al., 2006). This model is a global 3-D chemical
transport model (CTM) driven by real meteorological data
from the European Centre for Medium Range Weather Fore-
casting (ECMWF). The model was run with a 2.8◦ by 2.8◦

horizontal resolution and 40 vertical layers from the sur-
face up to 10 hPa. The chemical scheme includes compre-
hensive stratospheric and tropospheric chemistry. The spa-
tial and temporal variation in emissions has been included
based on the EDGAR3.2 inventories for anthropogenic emis-
sions (Olivier et al., 1999) and the GEIA inventories (www.
geiacenter.org/) for natural emissions.

The model was used to predict the vertical profiles for
each species above each site over the trend analysis period.
The tropospheric/stratospheric partial column functions (see
Sect. 2.1) were then applied to the profiles, and the bootstrap
resampling algorithm applied as for the measured columns.

The detailed results of these analyses, and their scientific
implications will be discussed in other papers, however a few
examples are given here to demonstrate the comparability be-
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Figure 4 Comparison between measured and modelled trends in A) tropospheric 
carbon monoxide and B) tropospheric ethane for each UFTIR site. 
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Figure 4 Comparison between measured and modelled trends in A) tropospheric 
carbon monoxide and B) tropospheric ethane for each UFTIR site. 
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Fig. 4. Comparison between measured and modelled trends in(a)
tropospheric carbon monoxide and(b) tropospheric ethane for each
UFTIR site.

tween the measured and modelled trends. Figure 3a and b
shows the tropospheric and stratospheric ozone trends, with
generally good agreement between the measured and mod-
elled results (given the trend uncertainties) including the dif-
ferences from site to site and between troposphere and strato-
sphere. Figure 4a and b shows the tropospheric trends for
carbon monoxide and ethane, again with good agreement be-
tween the data sets.

6 Discussion and conclusion

The ability to reliably determine trends in atmospheric
datasets is an important element in the study of the long term
behaviour of the atmosphere and climate system. Conven-
tional methods for estimating the uncertainties in the trends
may give misleading results as they make unjustified assump-
tions about the statistical distribution of the data. We have
established that the method described in this paper – boot-
strap resampling with a low order Fourier series to capture
the intra-annual variability – is a statistically robust method
for determining the trends and uncertainties. A series of sta-
tistical and experimental validation tests have been carried
out to demonstrate the suitability of the method. We have
also shown how the method can be applied to the aggregated

Atmos. Chem. Phys., 8, 6719–6727, 2008 www.atmos-chem-phys.net/8/6719/2008/
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data from different sites to give an assessment of the long-
term trends across a network of measurement sites.

The trend analysis method has been applied to long-term
datasets of direct and indirect greenhouse gases measured by
the UFTIR network of six ground-based solar FTIR sites.
The output from these analyses gives the trends and associ-
ated uncertainties for the total, tropospheric and stratospheric
columns of ozone, nitrous oxide, carbon monoxide, methane,
ethane and HCFC-22. These results provide a valuable data
resource for the study and modelling of the changing sources,
sinks and dynamics for each species. Further papers will ad-
dress the scientific interpretation of the results for the various
species.
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