61 research outputs found

    Determination of host status of citrus fruits against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae)

    Get PDF
    The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann) is a pest of citrus in parts of Western Australia. Three citrus cultivars: Valencia oranges, Eureka lemons and Imperial mandarins, as well as non-citrus control fruits, were examined for attractiveness and suitability to Medfly in the field and in the laboratory using choice and no-choice experiments. Oranges were more susceptible to Medfly than mandarins and lemons. Punctures in the skin had a significant impact on the degree of infestation in both citrus and non-citrus control fruit. Artificial infestation and larval survivorship were used to investigate the suitability of each cultivar to Medfly under laboratory conditions. Oranges and mandarins were suitable for the development of Medfly, but lemons were a poor host. When each cultivar was in season, field cage trials demonstrated that infestation occurred in oranges and mandarins but not in lemons

    Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)

    Get PDF
    Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species

    Adaptation to divergent larval diets in the medfly, Ceratitis capitata

    Get PDF
    Variation in diet can influence the timing of major life history events and can drive population diversification and ultimately speciation. Proximate responses of life histories to diet have been well studied. However, there are scant experimental data on how organisms adapt to divergent diets over the longer term. We focused on this omission by testing the responses of a global pest, the Mediterranean fruitfly, to divergent selection on larval diets of different nutritional profiles. Tests conducted before and after 30 generations of nutritional selection revealed a complex interplay between the effects of novel larval dietary conditions on both plastic and evolved responses. There were proximate-only responses to the larval diet in adult male courtship and the frequency of copulation. Males on higher calorie larval diets consistently engaged in more bouts of energetic courtship. In contrast, following selection, larval development time and egg to adult survival showed evidence of evolved divergence between diet regimes. Adult body size showed evidence for adaptation, with flies being significantly heavier when reared on their ‘own’ diet. The results show the multifaceted responses of individuals to dietary selection and are important in understanding the extreme generalism exhibited by the medfly

    Population-specific demography and invasion potential in medfly

    Get PDF
    Biological invasions are constantly gaining recognition as a significant component of global change. The Mediterranean fruit fly (medfly) constitutes an ideal model species for the study of biological invasions due to its (1) almost cosmopolitan geographic distribution, (2) huge economic importance, and (3) well-documented invasion history. Under a common garden experimental set up, we tested the hypothesis that medfly populations obtained from six global regions [Africa (Kenya), Pacific (Hawaii), Central America (Guatemala), South America (Brazil), Extra–Mediterranean (Portugal), and Mediterranean (Greece)] have diverged in important immature life-history traits such as preadult survival and developmental times. We also tested the hypothesis that medfly populations from the above regions exhibit different population growth rates. For this purpose, data on the life history of immatures were combined with adult survival and reproduction data derived from an earlier study in order to calculate population parameters for the above six populations. Our results clearly show that medfly populations worldwide exhibit significant differences in preadult survival, developmental rates of immatures and important population parameters such as the intrinsic rate of increase. Therefore, geographically isolated medfly populations may share different invasion potential, since population growth rates could influence basic population processes that operate mostly during the last two stages of an invasion event, such as establishment and spread. Our findings provide valuable information for designing population suppression measures and managing invasiveness of medfly populations worldwide

    Host plant range of a fruit fly community (Diptera: Tephritidae): Does fruit composition influence larval performance?

    Get PDF
    Background: Phytophagous insects differ in their degree of specialisation on host plants, and range from strictly monophagous species that can develop on only one host plant to extremely polyphagous species that can develop on hundreds of plant species in many families. Nutritional compounds in host fruits affect several larval traits that may be related to adult fitness. In this study, we determined the relationship between fruit nutrient composition and the degree of host specialisation of seven of the eight tephritid species present in La Réunion; these species are known to have very different host ranges in natura. In the laboratory, larval survival, larval developmental time, and pupal weight were assessed on 22 fruit species occurring in La Réunion. In addition, data on fruit nutritional composition were obtained from existing databases. Results: For each tephritid, the three larval traits were significantly affected by fruit species and the effects of fruits on larval traits differed among tephritids. As expected, the polyphagous species Bactrocera zonata, Ceratitis catoirii, C. rosa, and C. capitata were able to survive on a larger range of fruits than the oligophagous species Zeugodacus cucurbitae, Dacus demmerezi, and Neoceratitis cyanescens. Pupal weight was positively correlated with larval survival and was negatively correlated with developmental time for polyphagous species. Canonical correspondence analysis of the relationship between fruit nutrient composition and tephritid survival showed that polyphagous species survived better than oligophagous ones in fruits containing higher concentrations of carbohydrate, fibre, and lipid. Conclusion: Nutrient composition of host fruit at least partly explains the suitability of host fruits for larvae. Completed with female preferences experiments these results will increase our understanding of factors affecting tephritid host range. (Résumé d'auteur

    Ruskis in Hollywood

    No full text
    The start of the Cold War saw a change in both US international policy and American cinematic content. There was a sudden rise of Russians as the enemy, a trend which continues until this day. Despite a plethora of countries, American films again and again rely on Russian caricatures to fill their villainous roles. The rare difference in Hollywood stereotypes comes from American television, in which Russians are occasionally developed beyond simple villains or one-note characters. The demonization of Russians can be contributed to the forever-tense relationships between America and Russia, which date back to the Cold War, as well as the lack of racial tension that can arise from such a depiction. While the depiction of other countries (such as China, Iran, etc.) has elicited criticism on the basis of racism, the whiteness of the Russian population and the internalized hatred between the US and former USSR prevents such kind of protests
    corecore