133 research outputs found

    Framework for Dealing with Uncertainty in the Port Planning Process: An Icelandic Case of the Ports of Isafjordur Network

    Get PDF
    Ports have always been evolving to satisfy the new or changing demands of stakeholders. In this unstable world, ports as dynamic systems are developed under a high degree of uncertainty. Furthermore, black-swan events, for instance, the financial crisis in 2008, the avalanche in Flateyri (Iceland) in 2020, the COVID-19 pandemic in 2020-2021 make successful port planning a challenging task. Indeed, the ever-increasing complexity of a port system and its long technical lifetime make uncertainty considerations inevitable in the planning process. Therefore, this research presents a structured framework to deal with uncertainties, including opportunities and vulnerabilities, in the port planning process. To this end, a structured stakeholder analysis is performed to effectively and timely engage stakeholders in the planning process. Fuzzy logic 3-dimensional decision surface is used to identify the salient stakeholders. Subsequently, the success of the future port is defined in terms of the specific objectives of the stakeholders. To develop this definition, a problem structuring method and fuzzy multi-attribute group decision-making method are synthesized. Then, a port throughput forecast is conducted that accounts for epistemic uncertainty, including model and parameters uncertainties, and thus increases the reliability of forecast results. The method identifies the influencing macroeconomic variables on port throughput by mutual information and then applies the Bayesian statistical method to forecast the port throughput. Effective actions are planned to seize opportunities and manage vulnerabilities that manifest in the projected lifetime. Therefore, the port can adapt or better withstand the vagaries of the future. The nonlinearity of dealing with uncertainty by application of the framework provides a robust and better plan toward its success. The framework supports decision making under uncertainty and facilitates adaptive port planning. The framework is applied to the Ports of Isafjordur Network in Iceland. The results indicate that the uncertainties mainly present opportunities in the short-time horizon, while in the middle-time horizon the port network is confronted with multiple vulnerabilities.Hið öfluga og sívaxandi flókna eðli hafnarkerfa í margbreytilegum heimi skapar mikla óvissu varðandi þróunaráætlanir hafna. Enn fremur þá leiða óvæntir atburðir, svonefndir svartir svanir, eins og til dæmis efnahagshrunið 2008, snjóflóðið á Flateyri 2020 og COVID-19 faraldurinn, til þess að skipulagsgerð hafna er sérstaklega krefjandi verkefni sem er háð mikilli óvissu. Flækjustig hafnarkerfa og óvissa á löngum líftíma hafna gerir það óumflýjanlegt að taka tillit til óvissu í skipulagsferlinu. Þessi rannsókn setur fram skipulagsramma til að takast á við óvissu, þar á meðal tækifæri og veikleika, í skipulagsferli hafnar. Þessi rannsókn kynnir skipulagða hagsmunagreiningu til að virkja hagsmunaaðila hafna tímanlega í skipulagsferlinu. Þrívíddar ákvörðunaryfirborð byggt á loðinni (e. fuzzy) rökfræði er notað til að bera kennsl á mikilvæga hagsmunaaðila með mismunandi áhrif og hagsmuni. Í kjölfarið er árangur skipulagsins skilgreindur út frá markmiðum hagsmunaaðila og með samtvinnun eldri aðferðar og loðinnar rökfræði. Notuð er aðferð við gerð spár fyrir flæði um höfnina sem tekur tillit til þekkingaróvissu og eykur þannig áreiðanleika niðurstaðna spárinnar. Aðferðin skilgreinir þjóðhagslega áhrifaþætti á afkastagetu hafna með aðferð gagnkvæmra upplýsinga (e. mutual information) og beitir síðan Bayesískri tölfræði til að spá fyrir um afköst hafnarinnar. Árangursríkar aðgerðir eiga að geta nýtt tækifæri og takmarkað veikleika á áætluðum líftíma hafnarinnar, þar sem höfnin getur aðlagast eða þolað duttlunga framtíðarinnar betur. Sá ólínuleiki í að takast á við óvissu með því að beita skipulagsrammanum stuðlar að betra hafnarskipulagi. Skipulagsamminn styður ákvarðanatöku í óvissu umhverfi með því að auðvelda sveigjanlega skipulagsgerð fyrir hafnir. Skipulagsrammanum er beitt á hafnir Ísafjarðar. Helstu niðurstöður benda til þess að óvissan feli aðallega í sér tækifæri til skamms tíma, en til lengri tíma stendur hafnarkerfið frammi fyrir veikleikum.University of Iceland, Municipality of Isafjordur, Icelandic Road and Coastal AdministrationFina

    Determination of host status of citrus fruits against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae)

    Get PDF
    The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann) is a pest of citrus in parts of Western Australia. Three citrus cultivars: Valencia oranges, Eureka lemons and Imperial mandarins, as well as non-citrus control fruits, were examined for attractiveness and suitability to Medfly in the field and in the laboratory using choice and no-choice experiments. Oranges were more susceptible to Medfly than mandarins and lemons. Punctures in the skin had a significant impact on the degree of infestation in both citrus and non-citrus control fruit. Artificial infestation and larval survivorship were used to investigate the suitability of each cultivar to Medfly under laboratory conditions. Oranges and mandarins were suitable for the development of Medfly, but lemons were a poor host. When each cultivar was in season, field cage trials demonstrated that infestation occurred in oranges and mandarins but not in lemons

    A new class of B/W halftoning algorithms

    Full text link

    KINETICS MODELING AND ISOTHERMS FOR ADSORPTION OF NITRATE FROM AQUEOUS SOLUTION BY WHEAT STRAW

    Get PDF
    Nitrate is a colorless, odorless chemical substance with a chemical formulation of NO3- and average mass of 62.0049 gr/ Mol. According to an announcement of the world health organization (WHO), the standard amount of Nitrate in potable water is at most 50 ml/ lit (based on nitrate). Nitrate enters into the body and is transformed to nitrite by digestive system’s bacteria, then enters to the circulatory system and oxides the exiting iron in Hemoglobin of blood which converts the iron capacity from 2 to 3. As a result of this process Hemoglobin is converted to Methemoglobin which has far more less capacity in oxygen delivery. Therefore, the tissues cannot receive sufficient oxygen and it causes a disease called “Methemoglobinemia”. The objective of this study was to investigate the nitrate removal using wheat straw and determining the adsorption isotherms and kinetics. In this study, nitrate solutions were prepared from potassium nitrate salt. The pH values of the solutions were adjusted by NaOH and HCl at a concentration of 0.1 molar. The pH of the solution was adjusted to different values (4 to 13). Kinetics models of Ho et al and Lagergren were used to describe the data. Isotherm models of Langmuir and Freundlich were used to describe the data. The results showed that the maximum capacity of wheat straw in nitrate adsorption occurred at pH=6 and contact time 140 minutes. Equilibrium models (Langmuir and Freundlich) and non-equilibrium (Ho et al and Lagergren) were used to investigate the adsorption process. Comparing the determination coefficients between measured data and obtained value from Ho’s model (R2= 0.97) and Lagergren model (R2= 0.91) showed that the Ho’s model describes experimental data better. Also, comparing the Langmuir and Freundlich isotherm for nitrate adsorption by wheat straw showed that Freundlich isotherm (R2= 0.98) was more proper than Langmuir isotherm (R2= 0.83) in describing adsorption process

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    Sleep Apnoea in Patients with Stable Congestive Heart Failure - An Intervention Study with a Mandibular Advancement Device

    No full text
    In patients with congestive heart failure (CHF), sleep disordered breathing (SDB)--including obstructive and central sleep apnoea as well as periodic breathing--is a common condition and is believed to increase the risk of mortality. Treatment of SDB is considered important in the management of CHF. Improvements in SDB have a positive effect on cardiac output, measured with left ventricular ejection fraction (LVEF); on neurohormonal activity, measured as brain natriuretic peptide (BNP); and on the quality of life. Continuous positive airway pressure has been the traditional method used to treat SDB in patients with CHF, but compliance and tolerability are poor. A mandibular advancement device (MAD) is a dental device recommended for the treatment of sleep apnoea, but the method has never been evaluated in patients with CHF. The aims of the present studies were to evaluate the practical use of the MAD for the treatment of SDB in patients with CHF and to test the hypothesis that this intervention increases the dimensions of the pharyngeal airway (PAW), reduces SDB and BNP, and improves LVEF and the quality of life. Patients with mild to moderate CHF and SDB were evaluated using a portable polysomnographic device, lateral radiographs, cardiological and odontological examinations, and quality of life measures prior to and following intervention with an custom-made MAD. At the short-term follow-up 4-6 weeks after habituation with the MAD, the severity of SDB according to the apnoea-hypopnoea index had decreased from 25.1 +/- 9.4 (mean +/- SD) to 14.7 +/- 9.7 (p = 0.003). An increase in the inferior region of the PAW (7 +/- 5 mm) was observed on radiographs (p = 0.0001). However, no correlation between the effect of the MAD on the dimensions of the PAW and its effect on SDB was found. At the 6-month follow-up, the sleep apnoea-related symptoms had decreased by 31% (p = 0.003). Quality of life remained stable. BNP were reduced from 195.8 +/- 180.5 pg/ml to 148.1 +/- 139.9 pg/ml (p = 0.035). LVEF, however, remained unchanged. At the 12-month follow-up, 64 % of the patients were still using the MAD. Three patients withdrew from the study because of discomfort with the MAD. In most patients, MAD treatment had no severe side effect on the signs or symptoms of temporomandibular disorders. However, dental complications were observed. In conclusion, in patients with stable CHF who are experiencing problems with SDB, MAD intervention appears to reduce the severity of SDB, sleep apnoea-related symptoms, and neurohormonal activity. A lower tendency for PAW collapse may explain the effect observed on SDB. The reduction in plasma BNP may indicate decreased cardiac strain as a result of treatment of SDB. The 5-year survival rate, measured from the start of MAD intervention, was higher in the group that used a MAD than in the group that did not use a MAD (p = 0.036). No severe side effects on the stomatognathic system were observed during the intervention, and most patients--edentulous included--tolerated the treatment well. Impaired oral health, including reduced dentition and edentulousness, seemed to limit the use of the MAD in this group of elderly patients, both because of technical difficulties and because of the increased risk of dental complications. However, because the treatment of SDB is important in the management of CHF, the MAD intervention seems to be a valuable method in the treatment arsenal of SDB

    Vergleichende Analyse der Strategien der Europäischen Union und des Iran zur Reduktion des CO2-Ausstosses im Verkehrssektor

    No full text
    Table of Contents List of figures ................................................................................................................. v List of tables ...................................................................................................................viii Acronyms ...................................................................................................................... xi 1\. Introduction and Background ...................................................................................... 1 1.1. Introduction ............................................................................................................... 1 1.2. Global warming and the transportation sector ........................................................ 5 1.2.1. An introduction to global warming and carbon dioxide emissions ...................... 8 1.2.2. CO2 emissions according to fossil fuel consumption ......................................... 8 1.2.3. Economic issues of CO2 emissions in the transportation sector ....................... 9 1.2.4. CO2 emissions trends in the world transportation sector .................................. 10 1.3. Description of Iran’s transportation sector ............................................................. 13 1.3.1. Iran’s petroleum production ................................................................................. 13 1.3.2. Iran’s oil consumption .......................................................................................... 14 1.3.3. A glance at the history of development planning in Iran ..................................... 15 1.3.4. Five-Year Development Plans in Iran: An overview ........................................... 15 1.3.5. Iran’s automotive industry .................................................................................... 19 1.3.6. Employment in Iran’s automotive industry .......................................................... 24 ii 1.4. Problem definition and main research question .................................................... 26 1.4.1. Iran’s status in carbon dioxide emissions .......................................................... 26 1.4.2. Energy intensity in Iran......................................................................................... 30 1.4.3. Energy consumption and greenhouse gas emissions in Iran’s transportation sector .. 33 1.4.4. Energy Subsidies in Iran ..................................................................................... 35 1.4.5. Environmental degradation and air pollution in Iran............................................ 38 1.4.6. Social costs of fuel consumption in Iran ............................................................. 40 1.4.7. Main research question ....................................................................................... 44 1.5. Methodology ............................................................................................................ 46 1.5.1. Variables of the research ...................................................................................... 51 1.6. Theoretical approach ............................................................................................... 55 1.6.1. Carbon dioxide emissions and climate change ....................................................56 1.6.2. Environmental policy in national and international contexts.................................57 1.6.3. The political context of carbon dioxide emissions ............................................... 58 2\. Carbon dioxide emissions in in the European Union transportation sector .............. 71 2.1. CO2 emissions worldwide and in the EU: History and trends ................................ 71 2.1.1. A perspective on CO2 emissions worldwide ........................................................ 71 2.1.2. CO2 emissions in the EU: History and trends ...................................................... 74 2.1.3. Road transportation and carbon dioxide emissions in the EU ............................. 77 2.1.4. The international approach of the EU to controlling carbon dioxide emissions .. 78 2.2. CO2 emissions in the EU transportation sector: An overview ............................... 82 2.2.1. Current situation and emission trends .................................................................. 82 2.2.2. A perspective on CO2 emissions in the EU’s transportation sector ....................90 iii 2.3. Policies and regulations focusing on the automotive industry ................................ 95 2.3.1. Role of government in policy-making procedure .................................................. 95 2.3.2. Setting emission standards: A major step ............................................................ 97 2.3.3. Introducing voluntary CO2 standards ....................................................................100 2.3.4. Introducing mandatory CO2 standards...................................................................103 2.4 Policies and regulations for vehicle technology improvements .............................. 111 2.5. Policies for alternative fuels ..................................................................................... 118 2.6 Financial policies ....................................................................................................... 123 2.7 Policies for the demand side ..................................................................................... 128 2.8 Analyzing the policies and strategies of the EU ....................................................... 130 3\. Carbon dioxide emissions in the Iranian transportation sector................................... 135 3.1. The status of CO2 emissions in Iran ........................................................................ 135 3.2. CO2 emissions in Iran’s transportation sector.......................................................... 139 3.3. Policies and regulations focusing on the automotive industry and vehicles ........... 144 3.4. Policies and regulations focusing on emissions ....................................................... 153 3.5. Policies and regulations focusing on the Fuel Consumption and Subsidies Reform Plan...155 3.6. Policies and regulations focusing on CNG ................................................................ 159 3.7. Policies and regulations focusing on dismantling old vehicles in Iran...................... 167 4\. Analysis of fuel consumption and greenhouse gas emissions trends in Iran.............. 170 4.1. Developing a 25-year scenario based on a continuing current situation .................. 170 4.1.1. The Business As Usual (BAU) Scenario ................................................................ 171 4.2. Investigating current laws and regulations in Iran for reducing energy consumption and greenhouse gas emissions (SWOT analysis) .......................................................... 188 4.3. Developing 25-year strategies for reducing carbon dioxide emissions from Iran’s light- duty vehicles segment................................................................................................ 192 5\. Discussion and conclusion ............................................................................................ 208 5.1. Analyzing European policies ...................................................................................... 208 5.1.1. Lessons learned from the EU. ................................................................................. 209 5.1.2. EU challenges in CO2 reduction procedures ......................................................... 212 5.2. Defining a strategic roadmap for reducing CO2 in Iran’s transportation sector ....... 215 6\. References ..................................................................................................................... 219 A .......................................................................................................................................... 232The transportation sector represents a major proportion of the global greenhouse gases (GHGs) emissions. Fossil fuels supply over 95% of total energy used by the world transportation sector and this sector is responsible for 23% of the world energy related GHGs emissions. Over the past decade, GHGs emissions of transportation have grown at a faster rate than any other energy using sector. Factors such as number of mobile sources (vehicles), variety of vehicles technologies, many consumers with different driving behavior, variety of fuels (from conventional to alternative with different quality), have caused a more complicated situation for decision makers aiming to develop policies of CO2 emissions reduction in this sector. This study compares European and Iranian experience in developing carbon dioxide-related policies in transportation sector. The trend in the EU of increasing emissions in this sector has stopped since 2009 and according to new standards, new LDVs fleet hit 2015 CO2 emissions target in 2013 (127 gr CO2/km). This research concludes that this success is the result of deploying triple policy packages (base on technology, fiscal and fuel issues). Vehicle production in Iran has grown dramatically during the last decade. But, due to the high energy subsidies on the local market, weak technical regulations, and low access to new technologies, Iranian automakers have not enhanced the fuel efficiency of new products as their global counterparts. Transportation sector received around 212,000 billion IR.R in 2011 that is the largest consumer of governmental subsidies in energy sector (over 40%). It is expected that fuel demand in Iran will grow along with the growth of the motorization rate and fuel efficiency level of the road fleet. This issue is a challenge for the Iranian policymakers to overcome environmental impacts and economic consequences of energy consumption growth. The empirical part of the study is conducted in two approaches. Firstly, 24 scenarios were developed, using HIS EViews software, to predict fuel consumption and CO2 emissions in the light duty vehicles (LDVs) segment for 25 year period (2011 to 2036). Here, four parameters (population growth, economic growth, fuel efficiency improvement and fuel price growth) were used that affect fuel consumption and CO2 emissions in Iran’s LDVs fleet. The business as usual (BAU) scenario estimates that the amount of fuel consumption of Iran’s LDVs fleet will reach to 345 million barrels of oil equivalent in 2036. The growing rate is inevitable but in moderate and high fuel efficiency situations, the model predicts 313 and 285 million barrels of oil equivalent consumption in 2036 respectively. In conclusion, the study finds that economic growth is the most effective factor of increasing fuel demand. In addition, focusing on fuel efficiency policies (technology-base policies) can lead to better result rather than following just price policies. Secondly, a SWOT analysis was conducted to find out proper strategies in order to decrease CO2 emissions from LDVs segment in Iran. Benchmarking with the European policies, four strategies are extracted as the core concept of this analysis: mandatory regulation versus voluntary agreement, CO2 emissions versus fuel consumption regulation, approaching efficient fiscal policies (taxes for conventional and subsidies for low carbon fuels), and dieselization of the LDVs fleet. In this regards, a set of policy packages should be developed relating to governmental institutions (Ministry of Petroleum, Ministry of Industry and Iran Department of Environment, fuel producers and also automotive industry). It should be mentioned that public awareness should be addresses as the basic approach of any strategic roadmap in the country.Auf den Transportsektor entfällt der Hauptteil der globalen Treibhausgasemissionen. Der weltweite Energiebedarf für den Transportsektor wird zu 95 Prozent durch fossile Brennstoffe gedeckt, der wiederum einen Anteil von 23 Prozent an den globalen Treibhausgasemissionen hat. In den letzten zehn Jahren sind die Treibhausgasemissionen, verursacht durch den Transportsektor, im Vergleich zu anderen Sektoren stärker angewachsen. Die schwierigen Rahmenbedingungen, wie die große Anzahl und Unterschiedlichkeit der Fahrzeuge, die unterschiedlichen Fahrzeugtechnologien, unterschiedliches Fahrverhalten, unterschiedliche Treibstoffe (konventionelle und alternative Treibstoffe mit verschiedenen Qualitäten), stellen komlexe Herausforderungen für die Entscheidungsträger dar, die sich zum Ziel gesetzt haben, ein Regelwerk zur Reduktion der CO2-Emissionen im Transportsektor zu entwickeln. Diese Studie vergleicht europäische und iranische Ansätze um diesen Herausforderungen der Politikformulierung gerecht zu werden. In der Europäischen Union konnte der Anstieg der CO2-Emissionen im Transportsektor im Jahr 2009 gestoppt werden und die für 2015 anvisierten Ziele für leichte Nutzfahrzeuge wurde bereits im Jahr 2013 erreicht (127 gr CO2/km). Die Untersuchung kommt zu dem Schluss, dass dieser Erfolg das Ergebnis der Anwendung von drei Maßnahmepaketen ist, die technologische, finanzielle Aspekte sowie Fragen des Kraftstoffes zum Gegenstand haben. Die Fahrzeugproduktion im Iran ist in den letzten zehn Jahren dramatisch angewachsen. Aber aufgrund des stark subventionierten Energieverbrauchs im lokalen Markt, schwacher technischer Regulierung und dem mangelnden Zugang zu neuen Technologien, konnten die iranischen Fahrzeugproduzenten den effizienten Kraftstoffverbrauch nicht so stark verbessern wie ihre globalen Wettbewerber. Der Transportsektor erhielt im Jahr 2011 Subventionen in Höhe von 212.000 Mrd. IR. R und ist der größte Bezieher der von der Regierung gewährten Subventionen im Energiebereich (ca. 40 %). Es wird erwartet, dass der Kraftstoffverbrauch im Iran mit der Motorisierungsrate anwächst und dieser Anstieg vom Grad der Effizienz der Fahrzeuge abhängig ist. Dieses Frage und die Überwindung der Auswirkungen auf die Umwelt sowie die wirtschaftlichen Konsequenzen des Anstiegs des Energieverbrauchs stellen eine Herausforderung für die die iranische Politik dar. Der empirische Teil der Studie beinhaltet zwei Ansätze. Zunächst wurden 24 Szenarien unter Anwendung de HIS EViews Software entwickelt, um den Kraftstoffverbrauch und die CO2-Emissionen im Segment der leichten Nutzfahrzeugen für einen Zeitraum von 25 Jahren (2011-2036) zu prognostizieren. Hier wurden vier Parameter (Bevölkerungswachstum, Wirtschaftswachstum, Steigerung der Effizienz der Kraftstoffe und Anstieg des Preises für Kraftstoffe) verwendet, die Einfluss auf den Kraftstoffverbrauch und die CO2-Emissionen im Bereich der leichten Nutzfahrzeuge im Iran haben. Das BAU Szenario geht davon aus, dass der Kraftstoffverbrauch im Bereich der leichten Nutzfahrzeuge 345 Millionen Barrel Öläquivalent im Jahr 2036 erreichen wird. Der Anstieg des Energiebedarfs im Transportsektor is unvermeidlich, aber in Szenarien mit mittlerer und hoher Effizienz der Kraftstoffe prognostiziert das Modell einen Verbrauch von 313 bzw. 285 Millionen Barrel Öläquivalent im Jahr 2036. Die Studie kommt zu dem Schluss, dass das Wirtschaftswachstum der wesentlichste Faktor für den steigenden Kraftstoffbedarf ist. Darüber hinaus wurde deutlich, dass politische Maßnahmen die auf eine steigende Kraftstoffeffizienz (also auf den Bereich Technologie) abzielen, größeren Erfolg versprechen, als sich lediglich auf Maßnahmen im Bereich der Preispolitik zu beschränken. Zweitens wurde eine SWOT-Analyse durchgeführt, um geeignete Strategien zur Verringerung der CO2-Emissionen im Segment der leichten Nutzfahrzeuge im Iran zu finden. Durch den Vergleich mit euopäischen Lösungsansätzen konnten vier Strategien identifiziert werden, die das Kernkonzept für diese Analyse darstellen: verbindliche Regelung gegenüber freiwilliger Vereinbarung, CO2-Emissionen gegenüber Regulierung des Kraftstoffverbrauchs, effiziente Steuerpolitik (Steuern für konventionelle und Subventionen für kohlenstoffarme Brennstoffe), und höherer Anteil von Dieselfahrzeugen im Bereich der leichten Nutzfahrzeuge. In dieser Hinsicht sollte ein Maßnahmenpaket unter Einbeziehung staatlicher Institutionen (Ministerium für Erdöl, Ministerium für Industrie und Amt für Umwelt), Kraftstoffproduzenten und auch der Automobilindustrie enwickelt werden. Es gilt zu erwähnen, dass auch das öffentliche Bewusstsein als grundlegendes Element für eine strastegische Roadmap zu berücksichtigen ist
    corecore