103 research outputs found

    UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools

    Get PDF
    Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4�Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4�Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    FACT - The First G-APD Cherenkov Telescope: Status and Results

    Full text link
    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results

    A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells

    Get PDF
    Aims: A potential therapy for myocardial infarction is to deliver isolated stem cells to the infarcted site. A key issue with this therapy is to have at one\u27s disposal a suitable cell delivery system which, besides being able to support cell proliferation and differentiation, may also provide handling and elastic properties which do not affect cardiac contractile function. In this study an elastic scaffold, obtained combining a poly(ether)urethane-polydimethylsiloxane (PEtU-PDMS) semi-interpenetrating polymeric network (s-IPN) with fibrin, was used as a substrate for in vitro studies of human amniotic mesenchymal stromal cells (hAMSC) growth and differentiation. Methodology/Principal Findings: After hAMSC seeding on the fibrin side of the scaffold, cell metabolic activity and proliferation were evaluated by WST-1 and bromodeoxyuridine assays. Morphological changes and mRNAs expression for cardiac differentiation markers in the hAMSCs were examined using immunofluorescence and RT-PCR analysis. The beginning of cardiomyogenic commitment of hAMSCs grown on the scaffold was induced, for the first time in this cell population, by a nitric oxide (NO) treatment. Following NO treatment hAMSCs show morphological changes, an increase of the messenger cardiac differentiation markers [troponin I (TnI) and NK2 transcription factor related locus 5 (Nkx2.5)] and a modulation of the endothelial markers [vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR)]. Conclusions/Significance: The results of this study suggest that the s-IPN PEtU-PDMS/fibrin combined scaffold allows a better proliferation and metabolic activity of hAMSCs cultured up to 14 days, compared to the ones grown on plastic dishes. In addition, the combined scaffold sustains the beginning of hAMSCs differentiation process towards a cardiomyogenic lineage

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
    corecore