129 research outputs found

    Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    Get PDF
    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain)

    Rapid ice discharge from southeast Greenland glaciers

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1029/2004GL019474.[1] Interferometric synthetic-aperture radar (InSAR) observations of southeast Greenland glaciers acquired by the Earth Remote Sensing Satellites (ERS-1/2) in 1996 were combined with ice sounding radar data collected in the late 1990s to estimate a total discharge of 46 ± 3 km3 ice per year between 62°N and 66°N, which is significantly lower than a mass input of 29 ± 3 km3 ice per year calculated from a recent compilation of snow accumulation data. Further north, Helheim Glacier discharges 23 ± 1 km3/yr vs 30 ± 3 km3/yr accumulation; Kangerdlugssuaq Glacier discharges 29 ± 2 km3/yr vs 23 ± 2 km3/yr; and Daugaard-Jensen Glacier discharges 10.5 ± 0.6 km3/yr vs 10.5 ± 1 km3/yr. The mass balance of east Greenland glaciers is therefore dominated by the negative mass balance of southeast Greenland glaciers (−17 ± 4 km3/yr), equivalent to a sea level rise of 0.04 ± 0.01 mm/yr. Warmer and drier conditions cannot explain the imbalance which we attribute to long-term changes in ice dynamics

    Annual net snow accumulation over southern Greenland from 1975 to 1998

    Get PDF
    As part of NASA's Program for Arctic Regional Climate Assessment (PARCA), extensive ice core measurements of annual net water-equivalent accumulation have been made recently around the southern Greenland ice sheet. Analysis of these measurements demonstrates that annual and seasonal accumulation patterns are sometimes regional, with temporal variability in accumulation correlated over large areas. Using this unique, widely distributed set of contemporaneous accumulation measurements, as well as available previously published observations, we developed maps of annual net snow accumulation south of �73° N for each year from 1975 to 1998. Here net snow accumulation is defined as snow accumulation minus ablation. In order to achieve a more consistent spatial distibution of core measurements for each of the 24 years in the study period, some of the observed records were extrapolated up to 5 years using empirical relationships between monthly precipitation measured at coastal stations and the observed ice core net accumulation records. Initial comparisons between the maps of annual net snow accumulation and similar maps of net accumulation derived from meteorological model simulations show excellent agreement in the temporal variability of accumulation, although significant differences in the magnitude of accumulation remain. Both measurements and model simulations indicate that annual net accumulation, averaged over all higher-elevation regions (above 2000 m) of the southern ice sheet, varies significantly from one year to the next. The maximum year-to-year change during the 24-year study period occurred between calendar years 1995 and 1996, when the average annual net snow accumulation increased by 101 and 172 kg m-2 yr-1, or 37 and 57, for observations and model simulations, respectively. Taken alone, this 1-year change in average net snow accumulation corresponds to a drop in sea level of �0.16 and �0.28 mm yr-1. Copyright 2001 by the American Geophysical Union

    Spatiotemporal Interpolation of Elevation Changes Derived from Satellite Altimetry for Jakobshavn Isbrae, Greenland

    Get PDF
    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED)

    Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland

    Get PDF
    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED)

    Storm Surge Measurement with an Airborne Scanning Radar Altimeter

    Get PDF
    Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    Get PDF
    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, b, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets
    corecore