296 research outputs found
Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603
CONTEXT. Stellar populations are the building blocks of galaxies including
the Milky Way. The majority, if not all extragalactic studies are entangled
with the use of stellar population models given the unresolved nature of their
observation. Extragalactic systems contain multiple stellar populations with
complex star formation histories. However, their study is mainly based upon the
principles of simple stellar populations (SSP). Hence, it is critical to
examine the validity of SSP models. AIMS. This work aims to empirically test
the validity of SSP models. This is done by comparing SSP models against
observations of spatially resolved young stellar population in the
determination of its physical properties, i.e. age and metallicity. METHODS.
Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC
3603, is used to study the properties of the cluster both as a resolved and
unresolved stellar population. The unresolved stellar population is analysed
using the H equivalent width as an age indicator, and the ratio of
strong emission lines to infer metallicity. In addition, spectral energy
distribution (SED) fitting using STARLIGHT, is used to infer these properties
from the integrated spectrum. Independently, the resolved stellar population is
analysed using the color-magnitude diagram (CMD) for age and metallicity
determination. As the SSP model represents the unresolved stellar population,
the derived age and metallicity are put to test whether they agree with those
derived from resolved stars. RESULTS. The age and metallicity estimate of NGC
3603 derived from integrated spectroscopy are confirmed to be within the range
of those derived from the CMD of the resolved stellar population, including
other estimates found in the literature. The result from this pilot study
supports the reliability of SSP models for studying unresolved young stellar
populations.Comment: 9 pages, 5 figures, accepted to A&
GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 <z < 3.6
We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts’ properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments
The environment of the SN-less GRB 111005A at z = 0.0133
The collapsar model has proved highly successful in explaining the properties
of long gamma-ray bursts (GRBs), with the most direct confirmation being the
detection of a supernova (SN) coincident with the majority of nearby long GRBs.
Within this model, a long GRB is produced by the core-collapse of a metal-poor,
rapidly rotating, massive star. The detection of some long GRBs in metal-rich
environments, and more fundamentally the three examples of long GRBs (GRB
060505, GRB 060614 and GRB 111005A) with no coincident SN detection down to
very deep limits is in strong contention with theoretical expectations. In this
paper we present MUSE observations of the host galaxy of GRB 111005A, which is
the most recent and compelling example yet of a SN-less, long GRB. At
z=0.01326, GRB 111005A is the third closest GRB ever detected, and second
closest long duration GRB, enabling the nearby environment to be studied at a
resolution of 270 pc. From the analysis of the MUSE data cube, we find GRB
111005A to have occurred within a metal-rich environment with little signs of
ongoing star formation. Spectral analysis at the position of the GRB indicates
the presence of an old stellar population (tau > 10 Myr), which limits the mass
of the GRB progenitor to M_ZAMS<15 Msolar, in direct conflict with the
collapsar model. Our deep limits on the presence of any SN emission combined
with the environmental conditions at the position of GRB 111005A necessitate
the exploration of a novel long GRB formation mechanism that is unrelated to
massive stars.Comment: Now accepted by A&A. Manuscript replaced to match accepted version.
Some additional discussion added, and velocity map of the host galaxy now
include
Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048
We present the discovery of a molecular cloud at zabs=2.5255 along the line
of sight to the quasar J0000+0048. We perform a detailed analysis of the
absorption lines from ionic, neutral atomic and molecular species in different
excitation levels, as well as the broad-band dust extinction. We find that the
absorber classifies as a Damped Lyman-alpha system (DLA) with
logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a
depletion pattern typical of cold gas and an overall molecular fraction ~50%.
This is the highest f-value observed to date in a high-z intervening system.
Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7
km/s), cold component in which CO molecules are also found, with logN(CO)~15.
We study the chemical and physical conditions in the cold gas. We find that the
line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5
pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K.
Our model suggests that the presence of small dust grains (down to about 0.001
{\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1)
are needed to explain the observed atomic and molecular abundances. The
presence of small grains is also in agreement with the observed steep
extinction curve that also features a 2175 A bump. The properties of this cloud
are very similar to what is seen in diffuse molecular regions of the nearby
Perseus complex. The high excitation temperature of CO rotational levels
towards J0000+0048 betrays however the higher temperature of the cosmic
microwave background. Using the derived physical conditions, we correct for a
small contribution (0.3 K) of collisional excitation and obtain TCMB(z =
2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the
Universe. [abridged]Comment: 24 pages, 24 figures, accepted for publication in A&
PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe
We present the results of a multifrequency campaign on the high-redshift (z =
3.1) blazar PKS 0537-286. The source was observed at different epochs from 2006
to 2008 with INTEGRAL and Swift, and nearly simultaneously with ground-based
near-IR/optical telescopes. The SEDs are compatible with a model based on
synchrotron radiation and external inverse Compton scattering. The campaign
gives an insight into the physical environment of the blazar.Comment: 8 pages, 5 figures, accepted for publication in A&
A strong optical flare before the rising afterglow of GRB 080129
We report on GROND observations of a 40 sec duration (rest-frame) optical
flare from GRB 080129 at redshift 4.349. The rise- and decay time follow a
power law with indices +12 and -8, respectively, inconsistent with a reverse
shock and a factor 10 faster than variability caused by ISM interaction.
While optical flares have been seen in the past (e.g. GRB 990123, 041219B,
060111B and 080319B), for the first time, our observations not only resolve the
optical flare into sub-components, but also provide a spectral energy
distribution from the optical to the near-infrared once every minute. The delay
of the flare relative to the GRB, its spectral energy distribution as well as
the ratio of pulse widths suggest it to arise from residual collisions in GRB
outflows \cite{liw08}.If this interpretation is correct and can be supported by
more detailed modelling or observation in further GRBs, the delay measurement
provides an independent, determination of the Lorentz factor of the outflow.Comment: accepted for publ. in ApJ, 5 Fig
Afterglow rebrightenings as a signature of a long-lasting central engine activity? The emblematic case of GRB 100814A
In the past few years the number of well-sampled optical to NIR light curves
of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to
simultaneous multi-band imagers such as GROND. Combining these densely sampled
ground-based data sets with the Swift UVOT and XRT space observations unveils a
much more complex afterglow evolution than what was predicted by the most
commonly invoked theoretical models. GRB 100814A represents a remarkable
example of these interesting well-sampled events, showing a prominent late-time
rebrightening in the optical to NIR bands and a complex spectral evolution.
This represents a unique laboratory to test the different afterglow emission
models. Here we study the nature of the complex afterglow emission of GRB
100814A in the framework of different theoretical models. Moreover, we compare
the late-time chromatic rebrightening with those observed in other well-sampled
long GRBs. We analysed the optical and NIR observations obtained with the
seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m
MPG/ESO telescope together with the X-ray and UV data detected by the
instruments onboard the Swift observatory. The broad-band afterglow evolution,
achieved by constructing multi-instrument light curves and spectral energy
distributions, will be discussed in the framework of different theoretical
models. We find that the standard models that describe the broad-band afterglow
emission within the external shock scenario fail to describe the complex
evolution of GRB 100814A, and therefore more complex scenarios must be invoked.
[abridged]Comment: 11 pages, 7 figures, 2 tables; Astronomy & Astrophysics, in pres
On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029
Context. After the launch of the Swift satellite, the Gamma-Ray Burst (GRB)
optical light-curve smoothness paradigm has been questioned thanks to the
faster and better sampled optical follow-up, which has unveiled a very complex
behaviour. This complexity is triggering the interest of the whole GRB
community. The GROND multi-channel imager is used to study optical and
near-infrared (NIR) afterglows of GRBs with unprecedented optical and
near-infrared temporal and spectral resolution. The GRB 081029 has a very
prominent optical rebrightening event and is an outstanding example of the
application of the multi-channel imager to GRB afterglows. Aims. Here we
exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT
observations to study the nature of late-time rebrightenings that appear in the
optical-NIR light-curves of some GRB afterglows. Methods. We analyse the
optical and NIR observations obtained with the seven-channel Gamma-Ray burst
Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and
the X-ray data obtained with the XRT telescope on board the Swift observatory.
The multi-wavelength temporal and spectral evolution is discussed in the
framework of different physical models. Results. The extremely steep optical
and NIR rebrightening observed in GRB 081029 cannot be explained in the
framework of the standard forward shock afterglow model. The absence of a
contemporaneous X-ray rebrightening and the evidence of a strong spectral
evolution in the optical-NIR bands during the rise suggest two separate
components that dominate in the early and late-time lightcurves, respectively.
The steepness of the optical rise cannot be explained even in the framework of
the alternative scenarios proposed in the literature unless a late-time
activity of the central engine is assumed.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
- …