296 research outputs found

    Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    Full text link
    CONTEXT. Stellar populations are the building blocks of galaxies including the Milky Way. The majority, if not all extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, their study is mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. AIMS. This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, i.e. age and metallicity. METHODS. Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, is used to study the properties of the cluster both as a resolved and unresolved stellar population. The unresolved stellar population is analysed using the Hα\alpha equivalent width as an age indicator, and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT, is used to infer these properties from the integrated spectrum. Independently, the resolved stellar population is analysed using the color-magnitude diagram (CMD) for age and metallicity determination. As the SSP model represents the unresolved stellar population, the derived age and metallicity are put to test whether they agree with those derived from resolved stars. RESULTS. The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations.Comment: 9 pages, 5 figures, accepted to A&

    GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 <z < 3.6

    Get PDF
    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts’ properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments

    The environment of the SN-less GRB 111005A at z = 0.0133

    Full text link
    The collapsar model has proved highly successful in explaining the properties of long gamma-ray bursts (GRBs), with the most direct confirmation being the detection of a supernova (SN) coincident with the majority of nearby long GRBs. Within this model, a long GRB is produced by the core-collapse of a metal-poor, rapidly rotating, massive star. The detection of some long GRBs in metal-rich environments, and more fundamentally the three examples of long GRBs (GRB 060505, GRB 060614 and GRB 111005A) with no coincident SN detection down to very deep limits is in strong contention with theoretical expectations. In this paper we present MUSE observations of the host galaxy of GRB 111005A, which is the most recent and compelling example yet of a SN-less, long GRB. At z=0.01326, GRB 111005A is the third closest GRB ever detected, and second closest long duration GRB, enabling the nearby environment to be studied at a resolution of 270 pc. From the analysis of the MUSE data cube, we find GRB 111005A to have occurred within a metal-rich environment with little signs of ongoing star formation. Spectral analysis at the position of the GRB indicates the presence of an old stellar population (tau > 10 Myr), which limits the mass of the GRB progenitor to M_ZAMS<15 Msolar, in direct conflict with the collapsar model. Our deep limits on the presence of any SN emission combined with the environmental conditions at the position of GRB 111005A necessitate the exploration of a novel long GRB formation mechanism that is unrelated to massive stars.Comment: Now accepted by A&A. Manuscript replaced to match accepted version. Some additional discussion added, and velocity map of the host galaxy now include

    Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

    Full text link
    We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]Comment: 24 pages, 24 figures, accepted for publication in A&

    PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe

    Get PDF
    We present the results of a multifrequency campaign on the high-redshift (z = 3.1) blazar PKS 0537-286. The source was observed at different epochs from 2006 to 2008 with INTEGRAL and Swift, and nearly simultaneously with ground-based near-IR/optical telescopes. The SEDs are compatible with a model based on synchrotron radiation and external inverse Compton scattering. The campaign gives an insight into the physical environment of the blazar.Comment: 8 pages, 5 figures, accepted for publication in A&

    A strong optical flare before the rising afterglow of GRB 080129

    Full text link
    We report on GROND observations of a 40 sec duration (rest-frame) optical flare from GRB 080129 at redshift 4.349. The rise- and decay time follow a power law with indices +12 and -8, respectively, inconsistent with a reverse shock and a factor 105^5 faster than variability caused by ISM interaction. While optical flares have been seen in the past (e.g. GRB 990123, 041219B, 060111B and 080319B), for the first time, our observations not only resolve the optical flare into sub-components, but also provide a spectral energy distribution from the optical to the near-infrared once every minute. The delay of the flare relative to the GRB, its spectral energy distribution as well as the ratio of pulse widths suggest it to arise from residual collisions in GRB outflows \cite{liw08}.If this interpretation is correct and can be supported by more detailed modelling or observation in further GRBs, the delay measurement provides an independent, determination of the Lorentz factor of the outflow.Comment: accepted for publ. in ApJ, 5 Fig

    Afterglow rebrightenings as a signature of a long-lasting central engine activity? The emblematic case of GRB 100814A

    Full text link
    In the past few years the number of well-sampled optical to NIR light curves of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to simultaneous multi-band imagers such as GROND. Combining these densely sampled ground-based data sets with the Swift UVOT and XRT space observations unveils a much more complex afterglow evolution than what was predicted by the most commonly invoked theoretical models. GRB 100814A represents a remarkable example of these interesting well-sampled events, showing a prominent late-time rebrightening in the optical to NIR bands and a complex spectral evolution. This represents a unique laboratory to test the different afterglow emission models. Here we study the nature of the complex afterglow emission of GRB 100814A in the framework of different theoretical models. Moreover, we compare the late-time chromatic rebrightening with those observed in other well-sampled long GRBs. We analysed the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m MPG/ESO telescope together with the X-ray and UV data detected by the instruments onboard the Swift observatory. The broad-band afterglow evolution, achieved by constructing multi-instrument light curves and spectral energy distributions, will be discussed in the framework of different theoretical models. We find that the standard models that describe the broad-band afterglow emission within the external shock scenario fail to describe the complex evolution of GRB 100814A, and therefore more complex scenarios must be invoked. [abridged]Comment: 11 pages, 7 figures, 2 tables; Astronomy & Astrophysics, in pres

    On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029

    Get PDF
    Context. After the launch of the Swift satellite, the Gamma-Ray Burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims. Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods. We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results. The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time lightcurves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysic
    corecore