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ABSTRACT

Context. After the launch of the Swift satellite, the gamma-ray burst (GRB) optical light-curve smoothness paradigm has been ques-
tioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is
triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared
(NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a
very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB af-
terglows.
Aims. Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature
of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows.
Methods. We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared
Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observa-
tory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models.
Results. The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the
standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral
evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time light-
curves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed
in the literature unless a late-time activity of the central engine is assumed.

Key words. techniques: photometric – gamma-ray burst: individual: GRB 081029

1. Introduction

For years after the discovery of the first gamma-ray burst (GRB)
afterglow (van Paradijs et al. 1997), the smoothness of the opti-
cal afterglow light-curves has been considered one of the main
GRB features (Laursen & Stanek 2003). Nowadays, thanks to
the rapid follow up with robotic telescopes, it is possible to re-
consider this paradigm and several examples of complex op-
tical light-curves are known. The Gamma-Ray burst Optical
Near-infrared Detector (GROND) is a seven-band simultane-
ous optical-NIR imager mounted on the 2.2 m MPI/ESO tele-
scope at La Silla observatory (Greiner et al. 2008). GROND
is a unique instrument to study the optical spectral evolution
associated to these complex light-curves (e.g., GRB 071031
Krühler et al. 2009; GRB 080129 Greiner et al. 2009). In
this paper, we report on the multi-wavelength observation of
GRB 081029. This GRB is characterised by a very complex
light-curve with a strong chromatic temporal evolution. In the

� Full GROND photometry of GRB 081029 is only available in elec-
tronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A39

optical and near-infrared bands an extremely steep rebrighten-
ing, at around 3 ks after the trigger, suddenly interrupts the
smooth early-time temporal evolution. Thanks to GROND we
were able to observe this event simultaneously form the opti-
cal g′r′i′z′ to the near-infrared JHKs bands. This unprecedented
temporal and spectral resolution allows a time-resolved analy-
sis of the colour evolution. The analysis of the XRT light-curve
excludes the presence of a similar rebrightening in the X-ray
bands, which casts doubts on the common nature of the optical
and X-ray afterglow emission.

The existence of late-time rebrightenings in some GRB op-
tical afterglows has been known since the dawn of afterglow ob-
servations (e.g., the optical bump of GRB 970508, Vietri 1998;
Sokolov et al. 1998; Nardini et al. 2006) and several models
have been proposed to account for deviations from a smooth
power-law evolution in the optical light-curves (see Sect. 5).
Some of them, in the framework of standard external-shock af-
terglow model, invoke a discontinuity in the external medium
density profile (e.g., Dai & Wu 2003; Lazzati et al. 2002; Nakar
& Piran 2003) some of them considering possible variations
of the micro-physical parameters into the fireball (Kong et al.
2010). In other cases a possible energy injection into the fireball
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(e.g., Jóhannesson et al. 2006; Fan & Piran 2006) or complex
jet geometry is considered (e.g., Racusin et al. 2009). In the late
prompt model (Ghisellini et al. 2007, 2009; Nardini et al. 2010),
a late-time activity of the central engine produces optical and
X-ray radiation that is superposed on the standard external-shock
afterglow emission.

In Sect. 2 we present the available broad-band data set.
In Sects. 3 and 4 we describe the complex optical and X-ray
light-curves and we analyse the broad-band spectal evolution. In
Sect. 5 we study the possible origin of the optical rebrightening,
discussing the observed temporal and spectral properties of the
afterglow of GRB 081029 in the framework of different physical
models.

2. Observations and data reduction

2.1. Swift observations

On 2008 October 29 at 01:43:56 UT, the Swift Burst Alert
Telescope (BAT) triggered on a long burst (trigger = 332931)
(Sakamoto et al. 2008) located at coordinates RA(J2000) =
23h07m06s, Dec(J2000) = −68◦10′43.′′4 (Cummings et al.
2008). The BAT mask-weighted light-curve is characterised by
a single smooth peak starting around 50 s before trigger, peak-
ing around 60 s after the trigger, and ending around 300 s after
trigger. The 15–350 keV duration is T90 = 270 ± 45 s. A sim-
ple power-law model provides a good fit of the time-integrated
15–350 keV spectrum with an index α = 1.43 ± 0.18 (χ2 =
50.7/57 d.o.f.). In the same BAT energy range GRB 081029
has a fluence of 2.1 ± 0.2 × 10−6 erg cm−2, and a peak flux of
0.5 ± 0.2 × 10−6 erg cm−2 s−1 (Cummings et al. 2008).

Owing to observing constraints, the spacecraft could not im-
mediately slew to the position of the burst. The X-ray (XRT;
Burrows et al. 2005) and UV/Optical Telescope (UVOT; Roming
et al. 2005) did not start to observe the field of GRB 081029
until 2.7 ks after the trigger. XRT started observing in pho-
ton counting (PC) mode and found an uncatalogued source in-
side the BAT error box located at RA(J2000) = 23h07m05.51s,
Dec(J2000) = −68◦09′21.′′9 (enhanced position obtained com-
bining 2.6 ks of XRT data and 3 UVOT images; Goad et al.
2008).

2.2. Optical and NIR observations

The detection of the optical afterglow of GRB 081029 was first
reported by Rykoff (2008), who observed an uncatalogued fad-
ing source inside the XRT error box with the ROTSE-IIIc tele-
scope. Further observations were reported by Clemens et al.
(2008) (GROND), by Covino et al. (2008a) (REM), West et al.
(2008) (PROMPT telescopes), and Cobb (2008) (ANDICAM).
A redshift of z = 3.8479 ± 0.0002 was first reported by D’Elia
et al. (2008) from an observation with VLT/UVES and then con-
firmed by Cucchiara et al. (2008) with GEMINI/GMOS.

2.2.1. GROND observations and data analysis

GROND started observing the field of GRB 081029 at about
1:52 UT on 2008 October 29 (∼8 min after the gamma-ray trig-
ger) and detected the variable source reported by Rykoff (2008)
in all seven available optical and NIR bands. GROND kept ob-
serving GRB 081029 as long as it was visible from La Silla (un-
til about 7:35 UT). Further multi-band observations were taken
one, two, three and five days after the trigger. The GROND opti-
cal and NIR image reduction and photometry were performed

using standard IRAF tasks (Tody 1993) similar to the proce-
dure described in Krühler et al. (2008b). A general model for
the point-spread function (PSF) of each image was constructed
using bright field stars, and it was then fitted to the afterglow.
Optical photometric calibration was performed relative to the
magnitudes of five secondary standards in the GRB field. During
photometric conditions, a primary SDSS standard field (Smith
et al. 2002) was observed within a few minutes of observing the
GRB field in the first night. The obtained zeropoints were cor-
rected for atmospheric extinction and used to calibrate stars in
the GRB field. The apparent magnitudes of the afterglow were
measured with respect to the secondary standards. The absolute
calibration of the JHKs bands was obtained with respect to mag-
nitudes of the Two Micron All Sky Survey (2MASS) stars within
the GRB field (Skrutskie et al. 2006).

2.2.2. Host galaxy search

In order to verify the possible presence of a bright (RAB ∼
25 mag) host galaxy associated with the burst, we observed
the field of GRB 081029 with the ESO New Technology
Telescope (NTT) equipped with EFOSC. Observations started at
02:13:37.74 UTC of 2010 November 3736 days (∼6.4 × 107 s)
after the burst. Mid-time of the observations is 2010
November 3, 02:46:23 UTC. A series of images in the R-band fil-
ter with a total exposure time of 0.8 h was obtained under photo-
metric conditions with a seeing between 0.′′6 and 0.′′8. No source
is detected down to a 3σ limiting magnitude of RAB > 25.8 mag,
which has been derived by tying the R band magnitudes of field
stars to their GROND r′ and i′ photometry1.

2.3. X-ray data reduction and spectral analysis

We analysed the XRT data of GRB 081029 with the Swift
software package distributed with HEASOFT (v6.8). The XRT
data were reprocessed with the XRTPIPELINE tool2. The entire
XRT follow-up of GRB 081029 was performed in PC mode
and, since the 0.3–10 keV observed count-rate never exceeded
0.5 counts s−1, no pile-up correction was required (Moretti et al.
2005; Romano et al. 2006; Vaughan et al. 2006). The extraction
was in circular regions with typical widths of 25 and 20 pixels
depending on the count rate, as discussed in Evans et al. (2009).
The spectra were extracted with the standard grade. Background
spectra were extracted in regions of the same size far from the
source. For all spectra we created ancillary response files (ARF)
with the xrtmkarf tool and used the calibration database up-
dated to January 2010. The spectra were re-binned to have a
minimum of 20 counts per energy bin, and energy channels be-
low 0.3 keV and above 10 keV were excluded from the analysis.
The XSPEC (v12.5.1) software was utilised for the analysis.

We extracted a spectrum of the complete first observation
(obsid 00332931000) from about 2.7 ks to about 51 ks for a
total XRT exposure time of 21.6 ks. We fitted the spectrum
with a model composed of a power-law with two absorption
components at low X-ray energies, wabs and zwabs. The first
one corresponds to Galactic absorption and its column density is
fixed to the Galactic value Ngal

H = 2.8×1020 cm−2 (from Kalberla
et al. 2005). The second absorption is due to the material located
at the redshift of the source and its column density Nhost

H was

1 http://www.sdss.org/dr7/algorithms/
sdssUBVRITransform.html#Lupton2005
2 Part of the XRT software, distributed with the HEASOFT package:
http://heasarc.gsfc.nasa.gov/heasoft/
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Table 1. Results of the X-ray spectral fitting.

tstart − tend βX Nhost
H χ2

red

s after trigger 1021 cm−2

(0.27–5.1) × 104 0.96+0.09
−0.09 5.3+6.2

−4.3 1.06
(0.27–1.1) × 104 0.93+0.12

−0.11 4.0+8.1
−4.0 0.65

(1.4–5.1) × 104 1.02+0.16
−0.17 7.6+9.9

−7.6 1.36

Notes. We report the time interval in which the spectrum was extracted,
the unabsorbed spectral index βX, the equivalent neutral hydrogen col-
umn density at the host redshift Nhost

H , the reduced χ2.

left free to vary. The 90% confidence intervals on the best-fit
parameters are obtained with the error command in XSPEC.
This spectrum is well fitted by the single power-law model with
a χ2

red = 1.06 for 69 d.o.f. The best-fit value of the host galaxy
absorption component is Nhost

H = 5.3+6.2
−4.3 × 1021 cm−2 and the

spectral index is βX = 0.96 ± 0.09 (where the standard notation
Fν ∝ ν−β is used). In order to test for possible spectral evolution,
we divided the first observation into two time intervals. The first
one corresponds to the first two orbits before 11 ks after the trig-
ger and the second covers the rest of the observation. The best-fit
parameters of both spectra are consistent with each other. Results
of the X-ray spectral analysis can be found in Table 1.

3. Afterglow temporal evolution

3.1. Optical and near-infrared light-curve

GRB 081029 is characterised by a complex optical and near-IR
light-curve as shown in Fig. 1. We can divide the optical-NIR
light-curve into three phases:

i) from 102 to 3.5 × 103 s: a curved shallow decay phase;
ii) from 3.5 × 103 to 2 × 104 s: a sudden rebrightening of about

1.1 mag in all GROND bands followed by a shallow decay
phase superposed with at least three small additional peaks;

iii) from 2 × 104 to 4.4 × 105 s: a steep decay phase.

In the following section we will describe the observed optical-
NIR evolution during these three phases.

3.1.1. Phase i)

The seven GROND optical-NIR light-curves of phase i) can
be well represented by a smoothly-connected broken power-
law (χ2

red = 0.95) while a single power-law fit is excluded
(χ2

red = 4.4). If we contemporaneously fit these seven bands us-
ing the parametrisation form Beuermann et al. (1999)

F(i)(t) ∝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
( t
t(i)

)s(i)α(i)
1

+

⎛⎜⎜⎜⎜⎜⎝ t

t(i)
b

⎞⎟⎟⎟⎟⎟⎠
s(i)α(i)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 1

s(i)

, (1)

where α(i)
1 (α(i)

2 ) is the pre-(post-)break decay index3, s(i) is the
sharpness of the break, the apex (i) the light-curve phase we are
describing and the break time t(i)

b is defined as,

t(i)
b = t(i)

⎛⎜⎜⎜⎜⎜⎝−
α(i)

1

α(i)
2

⎞⎟⎟⎟⎟⎟⎠
1

s(i)
(
α

(i)
2 −α

(i)
1

)

·

3 Note that in this equation we use the standard notation in which pos-
itive (negative) values of α imply a decline (rise) of the light-curve.

Fig. 1. Observed GROND seven-band light-curve of the afterglow of
GRB 081029. Fluxes were not corrected for Galactic foreground ex-
tinction. The full GROND data set is available as on-line material.

We obtain α(i)
1 = 0.38 ± 0.05 and α(i)

2 = 1.12 ± 0.06, and an
achromatic break t(i)

b located at 940 ± 30 s. The optical mag-
nitudes observed by the REM telescope 2.5 min after the trig-
ger (Covino et al. 2008a) are consistent with the extrapolation
to earlier times of this curve. A significant deviation from this
model can be seen after 2.2 ks, immediately before the start of
the intense rebrightening, where the light-curve commences a
flattening. Unfortunately, we lack observations between 2.7 ks
and 3.5 ks, exactly around the beginning of the rebrightening.

3.1.2. Phase ii)

A steep rise is observed in all seven GROND bands and starts
between 2.5 ks and 3.5 ks. The lack of observations during this
interval does not allow us to precisely test the achromaticity of
this start. Between 3.5 ks and 4.8 ks the light-curve brightens in
all bands by more than 1.1 mag. This rise is very well tracked by
the GROND photometry with twelve 1-min observations in all
seven bands. After a short constant flux state lasting about 400 s,
around 5.2 ks after the trigger another rise of about 0.2 mag leads
to the maximum at 5.9 ks (see Fig. 3). In this discussion we
consider this further steep rebrightening at 5.2 ks as the first of
a series of optical flares superposed on the post-break shallower
power-law continuum. The brightness of the afterglow and the
consequent small error bars of the optical photometry during the
rise allow the identification of several substructures that make
the light-curve deviate from a simple power-law. Considering
only the data after 3000 s, the steep rise requires a power-law
index α(ii),(iii)

1 = −4.7 and a break around 4500 s. The position of
the break is not well constrained because of the “flare” at 5.2 ks.
If we take into account the possible contribution of the broken
power-law component we used while fitting the phase i) light-
curve, the steepness of the rise is even more extreme.

The phase ii) light-curve after the break is characterised by
an intense variability (see Fig. 2). Figure 3 shows that it can be
reproduced by a curved continuum with at least three flares su-
perposed at t ∼ 5.9, 8.1 and 18 ks with a similar flux excess with
respect to the continuum (∼0.16 mag in the r′ band) and simi-
lar logarithmic duration (Δt ∼ 0.05 dex). Another two possible
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Fig. 2. Observed GROND seven-band light-curve of the afterglow of
GRB 081029 during phase ii).

less intense events (Δmag ∼ 0.07 mag in the r′ band) can also be
seen at t ∼ 10 ks and t ∼ 12 ks. The flares are visible in all seven
bands and the peak-times are contemporaneous within errors.
The continuum shallow decay underlying the flaring activity can
be well described by a temporal index αshallow = 0.47.

3.1.3. Phase iii)

After a break, the optical-NIR light-curve steepens at around
19 ks. Unfortunately, we lack information about the light-curve
decay between 21 ks and 82 ks, owing to the day-time constraint
in La Silla. During this unobserved window the light-curve de-
clined by 3 mag, and the GROND observations obtained during
the second night (between 82 ks and 108 ks after the trigger)
seem to be well connected to the later observations of phase ii)
by a unique power-law with a temporal index of about 2.3.
Observations in subsequent nights, though, are brighter than the
extrapolation of this steep power-law, indicating a flattening of
the light-curve after about two days.

The complete light-curve of phases ii) and iii) can be well
fitted with a smoothly-connected triple power-law when exclud-
ing from the fit the flaring activity observed during phase ii) and
the late (t > 2 d) data (see Fig. 3). Any simpler model (i.e., with
a smaller number of free parameters such as e.g., a smoothly-
connected double power-law) is excluded (χ2

red � 10). Using
for the smoothly-connected triple power-law a similar functional
form as in Eq. (1), we obtain for phase ii) and iii) α(ii),(iii)

1 =

−4.5 ± 0.4, α(ii),(iii)
2 = 0.47 ± 0.03, and α(ii),(iii)

3 = 2.3 ± 0.2 with
a χ2

red = 1.15. The late-time (t > 2 d) fluxes are underestimated
by the extrapolation of this model.

3.1.4. The complete GROND light-curve

We finally tried to fit the whole light-curve with an empiri-
cal model consisting of the sum of a smoothly broken power-
law such as Eq. (1) and a smoothly-connected double power-
law model. The result is similar to what we reported before,
except that the flux contribution from the double power-law

Fig. 3. r′ band GROND light-curve of the afterglow of GRB 081029
modelled as a superposition of two separate components as discussed
in Sect. 3.1.4.

component makes the required temporal index of the rising
phase even more extreme α(ii),(iii)

1 = −8.2. For the same reason
the other decay phase indices are slightly steeper than the ones
reported above. Using the same formalism as before, we obtain
α(i)

1 = 0.351 ± 0.05, α(i)
2 = 1.2 ± 0.07, α(ii),(iii)

1 = −8.2 ± 0.4,
α(ii),(iii)

2 = 0.38 ± 0.05, and α(ii),(iii)
3 = 2.5 ± 0.25 with a χ2

red = 1.5
(obtained excluding the small sub-flares from the fit). This model
is the one reported in Fig. 3. The slightly higher value of χ2

red is
mainly because of the difficulty in reproducing the sharp tran-
sition around 3.5 ks and the possible light-curve flattening after
two days. The temporal breaks are consistent within errors with
the separate fits. In this complete light-curve modelling, the con-
tribution of the broken power-law component is important also
at late times (t > 1 × 105 s), decreasing the inconsistency of late
observations with the triple power-law model. A residual excess
is, however, still present, suggesting either the presence of an
underlying dim host galaxy or a further change in the optical
decay index. If the broken power-law component were affect-
ing the late-time light-curve, a contribution from r′ = 25 mag
host galaxy would account tor the brighter photometry. When
such a component is not contributing at late time, a brighter
r′ = 24.6 mag host is required. As discussed in Sect. 2.2, we
can exclude the presence of an underlying host galaxy down to
a limiting magnitude of r′host = 25.8 and therefore this flattening
is likely related to the afterglow evolution.

3.2. X-ray light-curve

Owing to observing constraints (Sakamoto et al. 2008), XRT
started to follow-up GRB 081029 only 2.7 ks after the trigger.
Observations were performed in PC mode and found an X-ray
counterpart with a 0.3–10 keV count rate of about 0.3 cts, corre-
sponding to an unabsorbed flux of about 1.3×10−11 erg cm−2 s−1

following the spectral analysis reported in Sect. 2.3. The count
rate of the XRT light-curve was downloaded from the UK
Swift Science Data Centre4 (see Evans et al. 2007, 2009,
for an extended description of the data reduction). The X-ray

4 http://www.swift.ac.uk/xrt_curves/
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Fig. 4. r′ band νFν light-curve (empty circles) superposed on the un-
absorbed 0.3–10 keV XRT light-curve (black crosses) of the afterglow
of GRB 081029. The r′ band data were corrected for the Galactic fore-
ground extinction. Vertical dashed lines represent the transition time
between the different phases described in Sect. 3.

light-curve does not show any evidence of a rebrightening con-
temporaneous to the one observed by GROND (see Fig. 4) and
can be described by a broken power-law with temporal indices
α1,X = 0.48 ± 0.1 and α2,X = 2.4 ± 0.17 (χ2

red = 1.13). A single
power-law model is excluded (χ2

red = 4.9). A small fluctuation
(ΔF ∼ 0.1 dex) from a straight power-law evolution is visible
during the first orbit (see Sect. 6). These temporal indices are
consistent with the values obtained for the optical-NIR evolu-
tion after the bump (α(ii),(iii)

2 = 0.47 ± 0.03, α(ii),(iii)
3 = 2.3 ± 0.2).

The temporal break is located at 18.5+1.5
−0.9 ks, in perfect agree-

ment with the break of the second component in the GROND
light-curve.

4. Colour evolution and spectral energy distribution
(SED)

Thanks to GROND’s capability of obtaining images in seven
bands contemporaneously, it was possible to study the colour
evolution during a bright optical rebrightening without requiring
any temporal extrapolation. Thanks to the very small errors in
the GROND photometry due to the good sky conditions during
the first night of observations and thanks to the brightness of the
source, we are able to study the evolution of the colour between
different bands in every exposure. Comparing the magnitudes
observed in different bands we clearly see a sudden reddening
during the optical rebrightening (see Fig. 5). A less prominent
colour evolution is observed during phase i) with the g′ − z′
colour getting bluer by about Δmag ≈ 0.1 between 400 s and
3000 s. We cannot exclude a further less prominent colour evo-
lution during phase iii) while the hint of colour evolution during
the small rebrightenings observed during phase iii) is not statis-
tically significant.

In order to estimate the possible effect of the host galaxy dust
absorption, we extracted the optical-NIR SED of GRB 081029
at different times before and after the bump. GRB 081029 oc-
curred at z = 3.8479, therefore both the GROND g′ (and par-
tially the r′) bands are affected by the Lyman alpha absorption.
Because of the uncertain intergalactic hydrogen column density

Fig. 5. Temporal evolution of the AB magnitudes differences between
GROND g′ and z′ bands. Vertical dashed lines represent the transition
time between the different phases described in Sect. 3.

Fig. 6. Temporal evolution of the optical spectral index β obtained fit-
ting the unabsorbed Ks,H, J, z′, i′, r′ GROND band SED for all the
available observations as discussed in Sect. 4. Vertical dashed lines
represent the transition time between the different phases described in
Sect. 3.

along the line of sight, the g′ band is excluded from the SED
fits. We fitted the other six optical-NIR GROND bands (i.e.,
Ks,H, J, z′, i′, r′) assuming a simple power-law spectrum after
correcting the observed fluxes for the foreground Galactic ex-
tinction of EB−V = 0.03 mag (Schlegel et al. 1998) correspond-
ing to an extinction of AGal

V = 0.093 mag using RV = 3.1. Large
and Small Magellanic Clouds (LMC, SMC) and Milky Way
(MW) extinction laws from Pei (1992) were used to describe the
dust reddening in the host galaxy. We found that all SEDs are
consistent with a negligible host galaxy dust absorption for all
considered extinction curves. Using a SMC extinction curve, we
obtained a 90% confidence level upper limit for the host galaxy
extinction Ahost

V < 0.16 mag at 10.9 ks. The Ks,H, J, z′, i′, r′ spec-
tral index (where the standard notation f (ν) ∝ ν−β is adopted) is
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Fig. 7. Combined GROND and XRT spectral energy distribution ex-
tracted around 11 ks as discussed in Sect. 4. The dashed line represents
the unabsorbed single power-law connecting the X-rays with the NIR
bands and characterised by a spectral index β = 1.00 ± 0.01. The solid
line represents the same absorbed model with Ahost

V = 0.03+0.02
−0.03 mag and

Nhost
H = 7.9+6.8

−5.9 × 1021 cm−2. Note that the g′ (and partially the r′) bands
are strongly affected by the Lyman break at z = 3.8.

βopt = 1.06+0.06
−0.05 and the reduced χ2 is 1.06. In Fig. 6 we show the

temporal evolution of the optical spectral index for each individ-
ual GROND observation. The colour evolution during the light-
curve bump shown in Fig. 5 is also clearly visible in Fig. 6 where
the spectral hardening is also observed before the bump. This
latter early-time colour evolution is consistent with the light-
curve break observed around 900 s to be caused by a spectral
break moving bluewards through the observed GROND bands.
The observed Δβopt could be related to an incomplete passage
of a cooling frequency in a wind-like profile if the shape of the
cooling break were very shallow. The slow decay rates observed
during phase i) do not agree with the standard closure relations
when compared with the values of βopt (see, e.g., Racusin et al.
2009) which cast some doubts on this interpretation. The nature
of the optical-NIR afterglow reddening during the rebrightening
will be discussed in Sect. 5.

Because the optical and X-ray light-curves show a similar
temporal evolution after the bump, we can analyse the combined
optical to X-rays spectral energy distribution under the simple
assumption that the flux observed in both bands is produced by
the same mechanism. Following the method described in Greiner
et al. (2011), we extracted a broad-band SED around 10 ks. We
selected this time interval to obtain a contemporaneous GROND
and XRT coverage and to avoid the presence of the small sub-
flares observed during the rebrightening. We find that the SED is
well fit by a single power-law connecting the NIR to the X-ray
band (see Fig. 7). Moreover, no host galaxy dust absorption is
required in this case. The best-fit value for rest-frame reddening
is Ahost

V = 0.03+0.02
−0.03 mag, the broad-band spectral index is β =

1.00 ± 0.01 with a host galaxy column density Nhost
H = 7.9+6.8

−5.9 ×
1021 cm−2, which is consistent with both βopt and the values of
βX and Nhost

H from the XRT spectral analysis reported in Table 1.

5. Nature of the optical rebrightening

The most evident peculiarity of GRB 081029 is the presence of
the intense optical rebrightening that occurs around 3.5 ks after
the trigger. This is not the first case in which a late-time optical

rebrighening is observed in a long GRB afterglow but the inten-
sity of the flux increase and the steepness of the light-curve rise
are unusual. Moreover, the density of the available data set and
the possibility to contemporaneously study the temporal evolu-
tion of the rebrightening in seven bands thanks to GROND make
GRB 081029 a unique case.

A sudden increase of optical flux was already observed in
one of the first afterglows ever detected. GRB 970508 showed
a rebrightening of about 1.5 mag in Ic, R and V bands around
one day after the trigger (Sahu et al. 1997; Vietri 1998; Sokolov
et al. 1998; Nardini et al. 2006). Other cases reported in the lit-
erature are GRB 060206 (Monfardini et al. 2006), GRB 070311
(Guidorzi et al. 2007; Kong et al. 2010), GGRB 71003 (Perley
et al. 2008; Ghisellini et al. 2009), and GRB 071010A (Covino
et al. 2008b; Kong et al. 2010).

Several interpretations have been proposed for explaining the
rebrightenings of these different GRBs but none of them is able
to take into account all the characteristics shown by the different
light-curves under a unique physical framework. In this section
we give a brief overview of the different proposed models and
will then check if the broad-band light-curve of GRB 081029
can be explained in the framework of some of these models.

5.1. Discontinuity in the density profile

In the external shock model, a sudden increase of the external
medium density can, in principle, produce a rebrightening in the
observed afterglow light-curve (Lazzati et al. 2002). Such a den-
sity profile can be found in the surroundings of a long GRB.
This is caused by the impact of the stellar wind on the interstel-
lar medium (Kong et al. 2010). This effect should be prominent
for frequencies between the typical synchrotron frequency and
the cooling frequency νm < ν < νc, therefore this could explain
the presence of a rebrightening in the optical without a corre-
sponding flux increase in the X-rays if the cooling frequency
is located between those bands. The presence of density-jumps
was used to explain the fluctuations in the optical light-curves of
GRB 030226 (Dai & Wu 2003) and GRB 021004 (Lazzati et al.
2002; Nakar & Piran 2003). However, a change in the external
density profile is not expected to produce a colour evolution in
the optical-NIR bands if the condition νm < ν < νc persists.
Because the cooling frequency is expected to move redwards
with increasing density (see, e.g., Panaitescu & Kumar 2000),
we would then require the density jump to be high enough to al-
low νc to move redwards of the observed Ks band to reproduce
the observed colour evolution.

However, numerical simulations have shown that even sharp
discontinuities with a strong increase in the density profile of
a uniform external medium, or the encounter of the blast wave
with a wind termination shock, cannot produce a sharp bump in
the observed light-curve and only a smooth and diluted change
can be detected (Nakar & Granot 2007; van Eerten et al. 2009).
For this reason, a simple change in the external medium density
is not a reliable explanation because the intense rebrightening of
the optical-NIR light-curve of GRB 081029 is very sharp.

5.2. Variation of micro-physics in wind bubbles

In a recent paper, Kong et al. (2010), tried to solve the problem
of reproducing sharp light-curve changes for a jump in the den-
sity profile. They divide the circum-burst environment into two
regions: the first one characterised by a stellar wind density pro-
file, the second one by a shocked stellar wind mixed with a small

A39, page 6 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116814&pdf_id=7


M. Nardini et al.: On the nature of the extremely fast optical rebrighteningof the afterglow of GRB 081029

fraction of the swept-up ISM. Letting the micro-physical param-
eters εe and εB vary with the electron energy γ in a different way
in the two regions, their synthetic light-curves are able to repro-
duce the sharp optical rebrightenings observed in some GRBs. In
their analysis, Kong et al. (2010) studied only GRBs with con-
temporaneous bumps in the optical and in the X-rays and took
into account only a single optical band without checking for pos-
sible colour evolution. For GRB 081029, the X-ray light-curve
does not show any contemporaneous rising phase and we also
observe a clear colour evolution in the GROND energy range
during the bump. A fine-tuning in the assumed evolution of the
micro-physical parameters would therefore be required to force
νc to pass through the optical-NIR energy range at exactly the
same time as the changing of the density profile to observe a
similar colour evolution. The analysis of the effects of a variation
of εe and εB on the cooling frequency is required to test if this
scenario can also explain cases like GRB 081029. Also in this
case, however, the pre-bump evolution observed in the X-rays
lacks explanation unless the X-ray frequencies are completely
unaffected by these changes.

5.3. Late prompt model

In the late prompt model (Ghisellini et al. 2007, 2009; Nardini
et al. 2010), the observed optical, NIR, and X-ray light-curves
of GRBs are produced by the sum of two separate components:
the standard forward shock afterglow emission and a radiation
related to a late-time activity of the central engine sustained by
the accretion of the fall-back material that failed to reach the
escape velocity of the progenitor star. The combined effect of
these two components can reproduce a large variety of observed
light-curves (Ghisellini et al. 2009) and is also used to describe
the presence of late-time optical rebrightenings in the light-
curves of GRB 071003 (Ghisellini et al. 2009) and GRB 061126
(Ghisellini et al. 2009; Nardini et al. 2010). In these events, the
excess of optical flux with respect to the extrapolation of the ear-
lier light-curve appears because the standard afterglow emission
is decaying as a power-law while the late prompt component
is still constant or slightly increasing and therefore it becomes
dominant at late times. Because the two components originate
in completely different mechanisms, a colour evolution in the
optical-NIR SED during the bump is expected, similar to the
one obtained for GRB 081029. A colour change related to an in-
creasingly dominant second component is indeed observed both
in GRB 071003 and in GRB 061126 (Ghisellini et al. 2009;
Nardini et al. 2010). On the other hand, in the late prompt model
(Ghisellini et al. 2007), the early-time flat (or slowly increasing)
evolution of the late prompt component is caused by a geomet-
rical effect (i.e., increase of the visible emitting surface owing
to a decrease of the Γ lorentz factor of the slower “late prompt”
shells). For GRB 081029 the rise of the optical rebrightening
is extremely steep which renders this scenario unlikely unless
a delayed reactivation of the central engine is responsible for
the emission of these less energetic shells. This delayed starting
point would allow a new definition of the late prompt component
starting time and consequently a flattening of this component’s
light-curve rise.

5.4. Two-component jet model

Another scenario that invokes the coexistence of two separate
emitting processes, and therefore allows the observation of a
discontinuity in the light-curve with a contemporaneous colour

evolution, is the two-component jet model. The presence of a fast
narrow jet, co-alligned with a wider, slower jet has been claimed
to be able to describe the complex broad-band evolution of some
GRBs (e.g., GRB 030329 Berger et al. 2003, GRB 080319B
Racusin et al. 2009; GRB 080413B Filgas et al. 2010). In this
scenario, a flattening or a bump in the observed light-curve can
be observed when the onset of the afterglow produced by the
slower (and wider) jet occurs when the afterglow emission of
the faster (and narrower) jet is already decreasing fast because
of an early-time jet break. The rising wider jet afterglow can
be characterised by a different SED in the observed bands and
therefore a colour evolution can be observed during the transi-
tion. At later times the observed radiation is dominated by the
wider jet afterglow.

The complexity of the GRB 081029 light-curve is hard to
explain in the framework of this scenario. The flat early-time
optical light-curve observed before the rebrightening, when in-
terpreted in the framework of a standard forward shock afterglow
scenario, suggests an environment characterised by a wind-like
density profile. On the other hand, to obtain a steep rebrighen-
ing at later times, the second jet afterglow light-curve requires
an ISM-like external medium. Moreover, the optical rise that
is required for two separate components is much steeper than
the pre-peak rise previously observed in other GRBs (Rykoff
et al. 2009; Panaitescu & Vestrand 2008). In the standard for-
ward shock emission scenario for an isotropic outflow seen face-
on by the observer, during the pre-deceleration phase the optical
light-curve is supposed to rise as F ∝ t2 or t3 depending on
the location of the cooling frequency. A steeper F ∝ t4 rise can
be obtained for of an off-axis observer for a collimated outflow
with a sharp angular boundary (Panaitescu & Vestrand 2008).
No steeper rise, similar to the one observed for GRB 081029
can be reproduced under these standard assumptions. Panaitescu
& Vestrand (2008) also found that the afterglows showing a
fast pre-peak rise (α < −1) are characterised by a correla-
tion between the k-corrected optical flux at the peak and the
redshift-corrected peak time assuming a common redshift z = 2.
Considering only the contribution of the second component cor-
rected for the Galactic foreground absorption (i.e., the triple
power-law described in Sect. 3), the peak flux calculated in the
r-band re-locating GRB 081029 at z = 2 is Fz=2

p = 1.3 mJy. The
peak time at redshift 2 is tz=2

p = 3.5 ks. Comparing these values
with the plot shown in Fig. 2 of Panaitescu & Vestrand (2008),
the rebrightening of GRB 081029 is inconsistent with this corre-
lation with GRB 081029 having a peak flux that is much brighter
than expected for the peak time. That confirms the difficulties of
explaining the fast optical bump of GRB 081029 as the signa-
ture of a second jet afterglow with the same initial time as the
one responsible for the early-time light-curve.

5.5. Energy injection

An alternative scenario invoked for explaining late-time optical
bumps is a discrete episode of energy injection into the fireball
by the late-time interaction of slow shells with the forward shock
(Jóhannesson et al. 2006; Fan & Piran 2006; Covino et al. 2008b;
Rossi et al. 2011). In GRB 081029, the steepness of the optical
bump and the large ratio between the second component and the
extrapolation of the early broken power-law decay (between ∼5
and 8 during the bump) imply a sudden release of a large amount
of energy at late times. Such an energy injection is not supposed
to produce a change in the observed synchrotron spectral slopes
under the standard assumption of non-evolving micro-physical
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parameters in the fireball (e.g., εe, p, εb) Under this assumption,
an observed spectral evolution can only be produced if one of the
characteristic frequencies (e.g., the cooling frequency νc) crosses
the observed bands. On the other hand, we know that no contem-
poraneous rebrightening is observed in the X-rays. This evidence
acts against this scenario because an episode of energy injection
would increase the normalisation of the whole synchrotron spec-
trum, which would be visible at all wavelengths.

6. Discussion

The complex light-curve of GRB 081029 is a remarkable ex-
ample of how the increasing quality of optical-NIR follow-up
represents a hard test for the proposed afterglow emission mod-
els. In Sect. 5 we have shown how the most commonly invoked
extensions of the standard external shock afterglow models fail
to reproduce the steep optical rise observed in the GRB 081029
light-curve without invoking fine-tuned sets of parameters that
still lack a convincing physical interpretation. The component
that is dominating the early-time pre-bump optical-NIR light-
curve is likely still present, although weak, during the optical
bump and becomes dominant again after 105 s. This evidence,
together with the sudden colour evolution that accompanies the
optical rebrightening, favours the two-component nature of this
light-curve. As discussed in Sects. 5.3 and 5.4, both the late
prompt an the two-component jet models fail to explain the ex-
tremely steep rise of the second component (F(t) ∝ t ∼ 8) in
their standard formulation. This problem could be solved by re-
scaling the time at which the second component starts to act. If
we shift the starting point of the second component t0,2 from the
gamma-ray detector trigger time to the mean time of the first
GROND observation in which we detect the rebrightening (i.e.
t0,2 = 3500 s after trigger), we have the shallowest value of the
rise we can obtain with this simple temporal rescaling. Taking
into account the contribution of the ongoing early-time compo-
nent, we obtain a rising temporal index of aboutα(ii),(iii)

1,rescaled ≈ −0.7
for the second component. We can therefore obtain any value for
α(ii),(iii)

1,rescaled between –0.7 and –8.2 selecting a new t0,2 between the

trigger time and 3.5 ks. For example, a slope α(ii),(iii)
1,rescaled ≈ −2.5,

typical of the fast optical rise afterglows studied by Panaitescu
& Vestrand (2008), can be obtained by shifting the initial time
to t0,2 ≈ 2500 s after trigger. Using this new observer frame
t0,2 ≈ 2500 s, the peak-time at redshift 2 is tz=2

p = 2.0 ks. This
value decreases the inconsistency with the correlation found by
Panaitescu & Vestrand (2008), but the peak of the second com-
ponent of GRB 081029 still lies above the correlation reported
in that paper.

Rescaling the t0,2 requires a reactivation of the central engine
∼0.5 ks (2.5 ks in the observer-frame) after the main event. Such
a rescaling of t0,2 implies that a new process separated from the
one producing the early optical light-curve is activated several
hundred seconds after the main event. If this process is related
to a delayed reactivation of the central engine, this could pro-
duce an observable signature at higher frequencies around the
new t0,2. The existence of prompt GRB light-curves showing
long periods of quiescence between separate peaks lasting up
to a few hundreds seconds has already been discussed in the lit-
erature (Ramirez-Ruiz et al. 2001; Romano et al. 2006; Burlon
et al. 2008, 2009; Gruber et al. 2010). Most of them are pre-
cursors (i.e., peaks preceding the main GRB event), but Burlon
et al. (2008) report on the case of GRB 060210 where two post-
cursors are observed 60 and 150 s after the end of the main
burst. There is no clear example with later time (t ≥ 1500 s)

post-cursors, although faint late-time peaks are hardly detectable
by BAT (see Holland et al. 2010, for a possible candidate). This
late-time activity of the central engine could likely be detectable
in the X-rays as a peak/flare in the XRT light-curve around the
new value of t0,2. Unfortunately, Swift slewed to GRB 081029
only after 2700 s owing to an observing constraint (Sakamoto
et al. 2008), and therefore we cannot constrain the presence of
such a signature around 2000–2500 s. However, the Swift slew
was early enough to observe the X-ray afterglow for around 1 ks
before the start of the optical rise. This early XRT light-curve re-
mains more or less constant during the first XRT orbit (between
2.7 and 5.5 ks) apart from a small fluctuation of the same order
as the flux error bars. No steep rise is therefore shown by the
X-ray light-curve simultaneous to the optical one. Because the
X-ray light-curve tracks the GROND one after the optical rise
and the broad-band SED is consistent with a single power-law
(see Sect. 4), we can assume that they are produced by the same
mechanism. Under this assumption the lack of a contempora-
neous X-ray rebrightening around 4 ks is barely understandable
without invoking an additional flux contribution in the X-rays in
the first 1 ks of the XRT observation. The quality of the X-ray
light-curve before 3.5 ks is not sufficient to test whether the XRT
light-curve before 4 ks is intrinsically constant or if it is caused
by a superposition of a component rising at a later time (simi-
lar to the one observed in the GROND bands) with the decreas-
ing tail of an unobserved flare that is occurred before 2.7 ks.
Even if it not possible to constrain a possible X-ray spectral
change during these early observations with a spectral fitting, the
hardness-ratio light-curve obtained using the publicly available
Swift Burst Analiser5 (Evans et al. 2010) shows a statistically
significant evolution during the first orbit (between 2.7 ks and
5.1 ks). This agrees with the presence of an undetected X-ray
flare at earlier times, corresponding with the possible reactiva-
tion of the central engine responsible of the optical and X-ray
emission after 4 ks.

7. Conclusions

In conclusion, the most commonly invoked extensions of the
standard afterglow models fail to explain the steepness of the op-
tical rebrightening observed in GRB 081029 in particular when
combined with the associated colour evolution and with the
lack of a contemporaneous rise in the X-rays. That the post-rise
optical-NIR light-curve tracks the X-ray evolution well suggests
the existence of a second component, separated from the one
producing the early-time optical afterglow, responsible for both
the observed optical and X-rays flux at later times. We are un-
able to determine the nature of this second component, but from
the combined GROND and XRT light-curve we can infer the
following phenomenological argument. An easy way to explain
the steepness of the rise of this second component is to assume a
reactivation of the central engine around 0.5 ks after the prompt
emission onset. Unfortunately, the lack of XRT coverage before
2.7 ks (obs frame) does not allow a direct proof of this hypoth-
esis (e.g., detecting a flare/post-cursor in the X-rays). However,
the flux excess in the first 1 ks of the XRT light-curve with re-
spect to the optical-NIR one is consistent with the existence of
an undetected X-ray post-cursor at the initial time of the second
component.
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