400 research outputs found

    Meter of Initial Speed of Mobile Object

    Get PDF
    The need to measure the initial velocity of a moving object is shown. A brief review and analysis of existing technical means suitable for solving the problem is given. The constructions of devices and their elements for measuring the initial velocity of a mobile object, structural diagrams of devices for measuring the initial velocity of a mobile object are considered. A design with a capacitive converter is proposed, which forms an information impulse. The results of the development can be used to design and manufacture the device

    Randomness in Classical Mechanics and Quantum Mechanics

    Full text link
    The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations, i.e. the uncertainty (errors of observation) in the determination of coordinate and momentum is always positive (non zero). A "functional" formulation of classical mechanics was suggested. The fundamental equation of the microscopic dynamics in the functional approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. The Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton trajectories are computed. An interpretation of quantum mechanics is attempted in which both classical and quantum mechanics contain fundamental randomness. Instead of an ensemble of events one introduces an ensemble of observers.Comment: 12 pages, Late

    The nonabelian Liouville-Arnold integrability by quadratures problem: a symplectic approach

    Full text link
    A symplectic theory approach is devised for solving the problem of algebraic-analytical construction of integral submanifold imbeddings for integrable (via the nonabelian Liouville-Arnold theorem) Hamiltonian systems on canonically symplectic phase spaces

    Antimicrobial drug consumption in the Russian Federation (2008–2022): pharmacoepidemiological study

    Get PDF
    Objective. To assess the dynamics of antimicrobial drug consumption in the Russian Federation. Materials and Methods. Data on antimicrobials for systemic use (ATC class J01) sales for the period 2008–2022 in the hospital and outpatient segment were downloaded from the IQVIA database. The absolute quantities of purchased antimicrobials were transferred to the defined daily doses (DDD) separately for the outpatient and hospital segments for each year of observation. Results. Over the period 2008-2022 there was an increase in antimicrobials consumption from 9.7 to 14.2 DDDs per 1000 inhabitants/day with a transient rise of up to 18.7 DDDs per 1000 inhabitants/day in 2020. In the outpatient segment, antimicrobials consumption was increased from 9.7 to 12.04 DDDs per 1000 population/day (a transient rise to 15.6 DDDs in 2020), and in the inpatient segment from 266.3 to 412.2 DDDs per 100 bed-days, respectively. When analyzing antimicrobials by access group (WHO classification AWaRe), there was a decrease in consumption «Access» group antimicrobials from 62% to 45%, an increase of «Watch» group antimicrobials from 38% to 63.4% and «Reserve» antimicrobials from 0.005% to 1.6%. Conclusions. The increase in consumption of «Watch» group antimicrobials requires effective use control measures to be implemented at both outpatient and inpatient medical care settings at the national level

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE

    A Cloud-Based Framework for Machine Learning Workloads and Applications

    Get PDF
    [EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models.This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386S1868118692

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by simultaneous heat and light detection

    Get PDF
    The CUORE project began recently a search for neutrinoless double-beta decay (0νββ0\nu\beta\beta) of 130^{130}Te with a O\mathcal{O}(1 ton) TeO2_2 bolometer array. In this experiment, the background suppression relies essentially on passive shielding, material radiopurity and anti-coincidences. The lack of particle identification in CUORE makes α\alpha decays at the detector surface the dominant background, at the level of \sim0.01 counts/(keV kg y) in the region of interest (QQ-value of 0νββ0\nu\beta\beta of the order of 2.5 MeV). In the present work we demonstrate, for the first time with a CUORE-size (5×\times5×\times5 cm) TeO2_2 bolometer and using the same technology as CUORE for the readout of the bolometric signals, an efficient α\alpha particle discrimination (99.9\%) with a high acceptance of the 0νββ0\nu\beta\beta signal (about 96\%). This unprecedented result was possible thanks to the superior performance (10 eV RMS baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70 eV) light signal dominated by γ\gamma(β\beta)-induced Cherenkov radiation in the TeO2_2 detector. The obtained results represent a major breakthrough towards the TeO2_2-based version of CUPID, a ton-scale cryogenic 0νββ0\nu\beta\beta experiment proposed as a follow-up to CUORE with particle identification

    A detection system to measure muon-induced neutrons for direct Dark Matter searches

    Get PDF
    International audienceMuon-induced neutrons constitute a prominent background component in a number of low count rate experiments, namely direct searches for Dark Matter. In this work we describe a neutron detector to measure this background in an underground laboratory, the Laboratoire Souterrain de Modane. The system is based on 1 m of Gd-loaded scintillator and it is linked with the muon veto of the EDELWEISS-II experiment for coincident muon detection. The system was installed in autumn 2008 and passed since then a number of commissioning tests proving its full functionality. The data-taking is continuously ongoing and a count rate of the order of 1 muon-induced neutron per day has been achieved
    corecore