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ABSTRACT In this paper we propose a distributed architecture to provide machine learning practitioners
with a set of tools and cloud services that cover the whole machine learning development cycle: ranging
from the models creation, training, validation and testing to the models serving as a service, sharing and
publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing
e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming
from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented
services to make their models publicly available, by adopting a serverless architecture and a DevOps
approach, allowing an easy share, publish and deploy of the developed models.

INDEX TERMS Cloud computing, computers and information processing, deep learning, distributed
computing, machine learning, serverless architectures.

I. INTRODUCTION
The impact of emerging computing techniques together with
an increasing dimension of large datasets and the availabil-
ity of more and more performing and accessible computing
resources is transformingmany research areas. This opens the
door to new opportunities to tackle unprecedented research
challenges. Over the last decade there has been a boost on the
usage of machine learning techniques in most of the research
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areas, and recently it has even improved with the adoption of
deep learning techniques, e.g. LeCun et al. [1]. Although the
basic components of the techniques are well known, recent
advances arouse the interest from the scientific community
towards this area, and it has already become a state-of-the-art
technology in many fields, from computer vision to speech
recognition.

The performance increase in the existing computing
technologies and the availability of specialized computing
devices played an important role in the advent of deep
learning. In particular, the availability of more efficient and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 18681

https://orcid.org/0000-0002-0013-4602
https://orcid.org/0000-0001-7914-8494
https://orcid.org/0000-0002-2641-9403
https://orcid.org/0000-0003-2820-6564
https://orcid.org/0000-0003-1802-5356
https://orcid.org/0000-0001-9149-244X
https://orcid.org/0000-0002-0157-4765
https://orcid.org/0000-0002-8049-253X
https://orcid.org/0000-0002-2355-2161
https://orcid.org/0000-0002-4852-1601
https://orcid.org/0000-0003-4350-7832
https://orcid.org/0000-0001-9393-3077
https://orcid.org/0000-0002-9350-0383
https://orcid.org/0000-0002-7423-9423
https://orcid.org/0000-0002-4424-4221
https://orcid.org/0000-0002-0124-4870
https://orcid.org/0000-0002-0628-1080
https://orcid.org/0000-0002-9142-2596
https://orcid.org/0000-0001-6317-7100
https://orcid.org/0000-0003-1364-9477
https://orcid.org/0000-0002-8770-3619
https://orcid.org/0000-0002-6769-0195
https://orcid.org/0000-0002-2473-6405
https://orcid.org/0000-0002-0241-9652
https://orcid.org/0000-0003-2801-5303
https://orcid.org/0000-0003-2491-7473


Á. López García et al.: Cloud-Based Framework for Machine Learning Workloads and Applications

affordable Graphical Processing Units (GPU), more suited
than Central Processing Units (CPU) for the kind of work-
loads that characterize the deep learning training tasks,
allowed the development of the so called neural networks
in an extremely efficient way. Moreover, hardware vendors
are actually developing new architectures with specific focus
on neural networks and deep learning, implementing specific
features for these kind of workloads, such as specialized
cores to accelerate large matrix operations of specialized
devices like Tensor Processing Units (TPUs) developed by
Google [2].

In parallel, current technological advancements related to
Cloud computing have been adopted by many research com-
munities to provision compute and storage resources, due
to the well known advantages of flexibility, elasticity and
economy that it can offer [3]. Cloud computing is now con-
sidered a common computing model among scientists and,
as a matter of fact, large scale distributed and pan-European
e-Infrastructures are offering Cloud computing services [4]
focused on scientific users. However, even if Cloud and its
related services had acquired an increasing interest among
the scientific computing ecosystem, the adoption of Cloud
computing infrastructures is still limited. In fact, the Infras-
tructure as a Service (IaaS) offers are considered too complex
and heterogeneous [5] to be efficiently exploited by end
users.

Consequently, a step ahead from low-level IaaS offerings
is needed to effectively exploit the potential of the Cloud
computing model. It is required to provide users with high
level tools, like Platform and Software as a Service stacks
(PaaS and SaaS respectively), able to implement the needed
flexibility to deliver solutions that can be tailored on purpose
to satisfy a given communities’ needs, providing also trans-
parent exploitation of the infrastructure resources [6].

In such respect, Machine learning ‘‘as-a-Service’’ can
clearly be considered as one of the most demanded services
when large-scale computing infrastructures are adopted.With
the increasing availability of the amount of data, the machine
learning pipelines for large-scale learning tasks can be
exploited to provide an additional level of challenge. With
the need for a proper design of the learning task at hand,
additional tasks result in the need to organize large-scale data.
Furthermore, provision of necessary computing power and
storage capacity as well as orchestration of various infrastruc-
ture components at different places have to be managed, since
large-scale data is commonly distributed.

It is a common opinion that such tasks cannot be man-
aged by all users. Most of them, in fact, have a domain
knowledge in specific fields, lacking technological or infras-
tructure knowledge. Therefore, a support by the infrastruc-
ture layer must break down the complexity of the task and
allow scientists to focus on their respective activities, i.e.
modelling of the problem, evaluating and interpreting the
results of the algorithms. Starting from the above assump-
tion, understanding the requirements of the user communities
becomes mandatory for infrastructure as well as resource

and technology providers in order to combine different
technologies and provide easy-to-use services for the end
users.

To address this goal, the ‘‘Designing and Enabling E-
infrastructures for intensive Processing in Hybrid Data
Clouds’’ (DEEP-Hybrid-DataCloud)1 project (hereinafter
referred as DEEP) developed and implemented a frame-
work to enable the transparent training, sharing, and serving
of machine learning models over distributed and hybrid e-
Infrastructures. In this work we present the DEEP approach
and architecture, showcasing how it enables researchers to
develop and train their machine learning models in a dis-
tributed manner. Using the DEEP framework, any data sci-
entist will be able to take all the steps of the learning cycle,
exploiting the whole potential of distributed e-Infrastructures.
The DEEP project contributions and highlights can be sum-
marized as follows:

• We provide transparent access to last generation com-
puting and storage distributed e-Infrastructures.

• We have developed a standardized API for machine
learning models, allowing to expose their functional-
ity with known semantics, regardless of the underlying
model.

• We provide an easy path to deploy the developed mod-
ules as services, following a serverless approach and
applying DevOps techniques, easing the transition from
development to production.

• We have build tools that allow the effective sharing of
the developed machine learning models and their asso-
ciated metadata, fostering a knowledge exchange in the
machine learning area.

The remainder of the paper is structured as follows.
Section II describes the related work in the area. In Section III
we elaborate on the motivation that is driving this develop-
ment. In Section IV we describe the proposed framework
and reference architecture that is being developed within the
DEEP project. In Section V we provide a brief description
of some of the early results obtained from different use
cases exploiting the DEEP framework. Closing this work,
Section VI presents the conclusions and potential future
work.

II. RELATED WORK REGARDING MACHINE LEARNING
PLATFORMS
Although machine learning systems have obtained limited
attention by research works and academia, there are still
similar cloud-based initiatives and solutions, aimed to lower
the entry barrier for users that want to leverage usage of
machine learning models.

Abdelaziz et al. developed a cloud based model to provide
machine learning services based on cloud computing with
focus on healthcare services [7]. In their work they provide
an algorithm to improve the virtual machine selection to
optimize the performance of some machine learning based
healthcare applications. However, this work focuses on the

1https://deep-hybrid-datacloud.eu
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selection of VMs based on an optimization model, rather than
providing a comprehensive framework for the development
machine learning applications over cloud infrastructures and
it is too focused on specific healthcare applications. Also
focused on specific applications, Wang et al. developed cloud
based framework to tackle the resource allocation problem for
wireless communications.

Resource allocation is a complex task that should not be
performed directly by users, unless they have the knowledge
and they are skilled to do so. This is a problem that has been
tackled beforehand by the authors [3], [5], [6]. In this line,
Messina et al. [8] developed a Hypertrust, a framework for
trustworthy resource allocation problems in utility computing
and cloud computing, providing a decentralized solution to
support trusted resource finding and allocation into federated
cloud infrastructures.

Li et al. present in their work [9], [10] the parame-
ter server. This project is a framework to solve distributed
machine learning problems, where globally shared param-
eters can be used as local sparse vectors or matrices to
perform linear algebra operations with local training data.
Kraska et al. developed MLBase [11], providing a simple
declarative way to specify machine learning tasks so that
they can be applied to a given data set exploiting an opti-
mized runtime. Systems like these present an advancement on
scalable machine learning, however users are tied to specific
frameworks and languages, rather than being able to choose
their preferred framework from the existing offer [12].

There is a vast number of authors that have performed
a significant quantity of studies [13]–[20] about the cloud
suitability and its associated performance for the develop-
ment and training of specific machine learning methods.
However, these studies are mostly exploiting infrastructure
resources or big data and analytics tools that are deployed on
top of those resources. The work presented in this paper goes
forward, providing a complete framework for the training,
sharing and deployment of machine learning applications,
exploiting cloud-based services.

In [21], Ishakian et al. provide an assessment of the feasi-
bility of serving deep learning models exploiting serverless
frameworks, where a serverless function provides an image
classification engine.

Rivero, Grolinger and Capretz proposed an architecture
for generic Machine Learning as a Service (MLaaS) [22],
together with an initial open source implementation. In their
work, theMLaaS service relied on different machine learning
algorithms to be specifically implemented for that particular
service, as well as data processing tools and auxiliary pro-
cesses. Similarly, Chan et al. [23] presented another architec-
ture for MLaaS named PredictionIO. They integrated several
machine learning models into a prediction service, accessible
through an API and a Graphical User Interface.

Li et al. [24] presented a design and implementation of
a scalable feature computing engine and store. Their frame-
work provided with tools to manage and train a hierarchy of
models as a single logical entity, together with an automated

deployment system and scalable real-time serving service.
Baldominos et al. [25] presented an online service for real
time big data analysis based on machine learning.

Besides, some open source tools do exist as well.
Polyaxon [26] aims to provide an enterprise-grade plat-
form for agile, reproducible, and scalable machine learn-
ing. Polyaxon aims to be deployed on premises, on top of
Kubernetes, and it provides tools for building, training, and
monitoring large scale deep learning applications. Despite
being an on premises solution, focused on enterprise appli-
cations, Polyaxon does not provide sharing or publishing
capabilities.

Other existing platforms have a clearly targeted user
audience. Kipoi is a model repository (model zoo) for
genomics [27] that allows sharing and exchanging models.
It covers key predictive tasks in genomics. Kipoi provides
data handling, Python and R APIs, leveraging online tools
and services (such as GitHub and CircleCI for storing mod-
els and performing nightly tests, respectively). Similarly,
ModelHub.ai [28] is a repository of deep learning mod-
els pre-trained for a wide variety of medical applications.
ModelHub.ai provides a framework in which users can plug
their model, as well as pre- and post-processing code. The
framework provides a runtime environment and helper func-
tions (like image conversion) as well as APIs to access the
model.

DLHub [29] puts the focus on publishing, sharing, and
reusing machine learning models and their associated data,
capturing its provenance and providing credit to authors.
DLHub also provides a model serving framework for execut-
ing inference and other tasks over arbitrary data. DLHub has
been exploited by several research projects with success, such
as [30], [31].

A common fact of Kipoi, ModelHub.ai and DLHub is is
their science centric vision, with strong focus on fostering
open source and positioning themselves as machine learning
repositories that contribute to the reproducibility of scientific
computation.

Moreover, several commercial platforms exist, providing
different levels of functionality. In this regard, Yao et al. [32]
performed an evaluation of the most popular commercial
machine learning platforms at the time of writing the article
(2017). They focused exclusively on the classification perfor-
mance and not on any other aspects and phases of themachine
learning development cycle. They found that, as expected,
with more user control over the platform there are more
performance gains, as well as a higher underperforming risk
due to bad configuration settings. A brief overview of those
platforms and services is given in what follows.

• Google Cloud AI [33] and Google Hub AI [34] with
their large catalogue of services including AutoML,
Computer Vision, Video Intelligence, Speech-to-Text
and Natural Language.

• Azure Machine Learning Service [35] and Studio [36]
which allow tracking and auto-scaling experiments to
GPU clusters.
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FIGURE 1. Learning cycle for a machine learning application.

• Model Asset eXchange [37] from IBM which offers a
range of services including computer vision and audio
classification.

• AWSMarketplace - Machine Learning [38] where users
and companies can develop their models and sell them
as services running on AWS. Their extensive catalogue
includes hundreds of services.

• H2O [39] tools cover financial services, insurance,
health care, manufacturing, marketing, retail and
telecommunications.

• Floydhub [40] aims at accelerating Deep Learning
development by relieving the user from the need to take
care of infrastructure, version control, environments and
deployment, based on exploiting resources from com-
mercial clouds.

• Deep Cognition [41] offers users to develop a model
with a visual editor, train and deploy models using a
REST API.

For the sake of completeness other similar platforms
include BigML [42], ParallelDots [43], DeepAI [44],
MLjar [45], Datarobot [46], Valohai [47], Vize [48],
Seldon [49], PredictronLabs [50], Gavagai [51] and
Cloudsignt [52].

Most of the previously mentioned commercial platforms
include the ability for users to access resources for devel-
oping, training, and testing models, as well as providing a
unified API to access their models. Others just provide Deep
Learning services that users can access through APIs.

Whilst many of the described services focus their activity
on a subset of the phases (mostly sharing and serving) of
the machine learning cycle (Figure 1), our work proposes a
comprehensive framework that comprises a set of services
and tools aimed at covering all the relevant phases of the
development and deployment of a machine learning applica-
tion: from the model creation (or update) to the serving and
sharing phases, passing trough the training (over distributed
computing infrastructures), testing and evaluation phases.
One distinct feature of the DEEP framework is its abil-
ity to exploit computing resources from production science
e-Infrastructures, commercial clouds or on-premises comput-
ing clusters. Moreover, the framework is designed so that
users are not tied to a specific learning tool or library, being
able to chose the framwework of their choice (e.g. Keras,
TensorFlow, Scikit-learn, PyTorch, etc [12])).

III. MOTIVATION FOR A MACHINE LEARNING
AS A SERVICE PLATFORM
The typical machine learning development cycle as proposed
by Miao et al. [53] (adapted in Figure 1) starts with a set
of data which is split into training data and test data. After
creating a model, normally starting from a reference one,
this model is then trained over the corresponding data. After-
wards, the test data is used to estimate the quality of themodel
with respect to its learning tasks. The latter can typically
be related to either classification or regression. After the
model has been trained and its accuracy has been evaluated as
satisfactory (this may imply repeating the create/update, train
and evaluate loop several times), the readily trainedmodel can
be used in applications for classification or regression.

From a computing perspective the various steps of this
learning cycle are not all equal, and the cycle can be repeated
several times (also when new data is available). While train-
ing is commonly computing intensive and relying on large
amounts of data being available, validation and classifica-
tion are much cheaper in terms of resources. An extreme
case of moving through the cycle very often is given by
online-learning algorithms. Similarly, data requirements for
the various steps within the cycle are different: Whilst some
algorithms need a large amount of data being available right
from the beginning at the training phase, others work through
the data in batches. Finally, depending on the learning algo-
rithm being used, various ways of distributed computing and
computing architecture are needed.

Moving ahead from the infrastructure and resources point
of view, different use cases rely on different levels of knowl-
edge in machine learning technology on the side of the user
communities. The users can therefore be classified in three
categories depending on their machine learning knowledge
and the use they want to make of the platform:

• Basic users just want to use the tools (i.e. models) that
have already been developed and apply them to their
data. They therefore need almost no machine learning
knowledge.

• Intermediate users want to retrain the available tools to
perform the same task but fine tuning them to their own
data. They still mayworkwithout detailed knowledge on
modelling of machine learning problems, but typically
they need basic programming skills to prepare their own
data into the appropriate format. Nevertheless, they can
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re-use the knowledge that is captured in a trained net-
work and tune it by re-training the network on their own
dataset (transfer learning). From the point of view of
infrastructure providers, this variant relies on a powerful
computing infrastructure to execute re-training and host
datasets of users.

• Advanced users, instead, are those developing their own
machine learning tools. They therefore need to be com-
petent in machine learning. They will then need to
design their own neural network architecture, potentially
re-using parts of the code from other tools. From the
infrastructure point of view this is the most resource
demanding case.

Machine learning specialists are normally keen on cover-
ing the create/update, training, and model evaluation phases.
Often, the final phase of sharing and publication of a model
is either neglected or it is assumed that enough knowledge
exists elsewhere to perform this action. Publication of mod-
els is, however, a critical step, because only public models
allow the effective exploitation of their functionality by others
(i.e. external communities and users can benefit from such
models).

Publication as suggested in the DEEP project is done by
offering models as a service. Sharing and reusing should
be key in any machine learning system, as this is a driving
factor for disseminating knowledge in science and fostering
collaboration across research areas.

During the DEEP project activities, carried out with the
support of different scientific communities [54] belonging to
the DEEP consortium, constraints, gaps and expected gains
have been identified thanks to the feedback provided by the
users and related to possible limitations in their current work
and chances of improvements.

In order to perform an efficient training of a given
model, access to computing power and storage resources
is needed. Even if some communities can have direct access
to the resources, this is generally not the case. Researchers
need to leverage distributed e-Infrastructures such as those
provided by the European Open Science Cloud ecosystem.
Although these facilities can compensate the lack of resources
problem to an extent, they impose other kind of challenges:
users need to deal with infrastructure details, that sometimes
are complex and hamper their research. Cloud technologies
allow to avoid these difficulties enabling to address machine
learning tasks in new ways fostering a general push in the
field of machine learning applications.

The use of e-Infrastructures and the cloud computing
paradigm, however, comes with limitations as well as the
requirement for users to understand usage and management
of such technologies. Even if restrictions related to the
structure of specific resource centres require detailed expert
knowledge, a certain degree of abstraction must be provided
so that users offload the infrastructure interactions to platform
level tools.

Once a user has designed, trained, and validated a model
on a given dataset, it can be shared so that other interested

users can exploit this trainedmodel on their data. This sharing
should be considered as a highly important key task in the
scientific machine learning life cycle due to the fact that
it is the only way to effectively enable collaboration and
break knowledge silos. Once the model is shared publicly,
it is possible to include these assets into the scholarly process
leading to a publication. However, there is no commonway to
share and make public a developed model without creating a
heterogeneous and fragmented ecosystem and preventing the
reuse of a model: users may need to face different methods
and tools for different published models.

Modern science is performed in a distributed and collab-
orative way, therefore serving a developed model over the
network, either to close collaborators or to a more general
audience, has to be considered as a key task that should
become part of the learning cycle applied to science [55]
Sharing a model over the network requires technological
knowledge (API implementation, security, etc.) that many
scientific users may not have.

The DEEP framework is offering solutions aimed at cover-
ing all the aforementioned aspects. The framework is provid-
ing also an environment where to improve reproducibility of
experiments carried out within the framework, as scientists
can provide a running endpoint where their results can be
tested and validated, linked with all the assets that take part
on the experiment: dataset, model’s source code, model con-
figuration and weights, etc. Reproducibility is defined as the
ability of a researcher to duplicate the results of a prior study
using the same data and means as were used by the original
investigator. The scientific community, in fact, has gained
awareness about the importance of following some basic
reproducibility principles on their research [56], increasing
thus the rigour and quality of scientific outputs and leading to
greater trust in science. These principles do not only include
the sharing of code and data but also publishing their prove-
nance, and storing them together with a meaningful set of
metadata and execution instructions.

Developing a comprehensive, reliable and secure source
code is of paramount importance in every software develop-
ment project. For such reason, the DEEP project implemented
for any aspect of its software life cycles a Software Quality
Assurance (SQA) processes acting as an enabler for accom-
plishing the aforementioned overarching goals of machine
learning models’ re-use and share.

IV. THE DEEP-HYBRID-DATACLOUD FRAMEWORK
The DEEP framework is designed for allowing scientists to
develop machine learning and deep learning models on dis-
tributed e-Infrastructures. It provides a comprehensive frame-
work that covers the whole machine learning development
cycle, as explained in Section III. For this different high level
components have been designed, depicted in Figure 2 and
described in what follows:

• The DEEP Open Catalogue,2 a marketplace where the
users and user communities can browse, share, store

2https://marketplace.deep-hybrid-datacloud.eu
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FIGURE 2. DEEP high level overview.

and download ready to use machine learning and deep
learning modules. This includes working and ready to
use applications (such as image classification tools, net-
work anomaly detection engines, etc.) as well as more
general purpose and generic models (such as image seg-
mentation or image super resolution tools). Moreover,
the marketplace also comprises additional components,
like complex application topologies (for example for
data ingestion), and all the model and application asso-
ciated metadata.

• The DEEP learning facility3 that coordinates and
orchestrates the overall model training, testing and
evaluation, choosing the appropriate Cloud resources
according to the computing and storage resources.

• The DEEP as a Service4 solution (DEEPaaS), that
provides a way to deploy and serve an already trained
model, stored in the catalogue, as a service, to provide
third users with the model functionality and acquired
knowledge.

• The storage and data services where the user data,
training and validation results, as well as any other data
assets are stored.

A. DEEP ARCHITECTURE
The detailed DEEP architecture is depicted in Figure 3. The
framework is divided into the main blocks already described
in Figure 2.

In the proposed approach a user may either start developing
a model from scratch or reuse one of the existing models
that are published in the DEEP Open Catalog. With both

3https://learn.deep-hybrid-datacloud.eu
4https://deepaas.deep-hybrid-datacloud.eu

approaches the model is encapsulated inside a Docker con-
tainer along with all the required libraries and the DEEP-
aaS API [57] component. The DEEPaaS API is a REST
endpoint, based on the OpenAPI specification [58] that pro-
vides a thin layer over a machine learning model, thus
ensuring consistency across all the modules that are pub-
lished into the marketplace. Moreover, this API has bindings
to allow seamless execution and serving, exploiting differ-
ent serverless frameworks such as OpenWhisk [59]. After
the model is encapsulated into a Docker container, all the
user interaction with the model, either locally or remotely,
is performed through this component via a convenient sim-
ple web interface that is available whenever the model is
loaded.

Once the model has been initially developed on the sci-
entist’s workstation, the user will submit it for training over
a distributed e-Infrastructure. To this aim we leverage the
INDIGO-DataCloud PaaS Orchestrator [6] together with the
Infrastructure Manager (IM) [60]. With these two compo-
nents it is possible to submit a training task to an exist-
ing computing cluster registered in the orchestrator database
(such as Apache Mesos or an HPC system) or to deploy any
complex application topology from scratch on top of any
bare IaaS deployment: the orchestrator will dispatch the tasks
to the most suited compute environment depending on the
requirements declared in the user request, like for instance
number of GPUs. Both approaches allow the user workload
to access the existing distributed storage systems (either on
premises or commercial) to obtain access to the data reposi-
tory used for the training. The topologies and workloads to
be deployed are described using the OASIS Topology and
Orchestration Specification for CloudApplications (TOSCA)
standard [61], and are handled transparently for the users
that do not need to deal with the TOSCA details. To also
provide advanced users with a tool to graphically build and
deploy application topologies, we are adopting and extending
Alien4Cloud [62], an open source tool that simplifies the
composition of applications for the Cloud.

After the deployment is made, the training and monitoring,
as well as the testing and evaluation tasks are performed by
interacting with the DEEPaaS API, using the aforementioned
REST endpoint or the simple web interface provided via
Swagger [58]. Again, this provides consistency for the users,
since the interaction with the model is the same in their
local workstations or when being executed on a distributed
e-Infrastructure.

If the evaluation phase is successful, the user will store
all the model components (like the trained model, training
weights, hyperparameters) in the storage systems, and will
submit a request to include the model in the DEEP Open Cat-
alog. To maintain a coherent marketplace, DEEP has defined
a JSON schema [63]. This allows unified characterization
and representation of the modules in the Open Catalog. The
DEEP schema [64] includes both basic –author, license, date,
name, description– and more specific metadata relevant for
the specific model execution and deployment. The metadata
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FIGURE 3. The DEEP detailed architecture (dotted lines represent automated notifications and transitions based on them).

is maintained in the user space, as an individual file under
the model’s repository code, so that the model’s developer is
fully responsible and comprehensively controls what infor-
mation is being rendered and displayed in the DEEP mar-
ketplace. The inclusion request within the Open Catalog can
be performed at any stage in the development phase. It is
granted only after the successful completion of a quality-
aware DevOps pipeline. The pipeline covers all tasks related
with the testing, delivery, and deployment of the new model
into the DEEP as a Service (DEEPaaS) component.

DEEPaaS is based on a serverless architecture where the
usermodel is encapsulated as a function (or action), providing
the model’s final functionality (e.g. prediction, inference,
etc.). The framework we have built is based on OpenWhisk,
using Mesos as the execution framework for the user defined
actions (i.e. the user models). A dedicated supervisor is

deployed on DEEPaaS as well, to react on the updates of
the existing models. DEEPaaS allows directly triggering an
inference task, as well as reactions to automated classification
tasks based on storage events that are published by the stor-
age systems. By leveraging OpenWhisk as the serving layer
the proposed solution can rely on it for the management of
horizontal scalability, thus providing users with a convenient
solution to deploy and serve machine learning models.

Our system is designed for extensibility, therefore taking
great care in designing a framework which can be updated
easily and where any component can be replaced with a new
one. We follow a so called ‘‘share-nothing architecture’’.
We have chosen to utilize Docker containers for executing
the user applications. This makes it possible to deliver cus-
tomized environments tailored to the user needs, and facili-
tating maximal portability of the runtime environments.
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Besides, by using the DEEPaaS API component to serve
the model functionality, a module can be deployed on any
computing infrastructure. The supported platforms range
from user workstations, computing servers all the way to
HPC systems, and Container Orchestration Engines (such
as Kubernetes or Mesos) or serverless frameworks such as
OpenWhisk. This way, the very same container image can
be executed regardless of the underlying computing infras-
tructure. This ensures the highest possible level of portability
and results in reproducibility. In cases in which Docker is
not available, it is possible to execute the model by using the
udocker [65] tool.

B. ENSURING SOFTWARE QUALITY AND INSTANT
READINESS OF MACHINE LEARNING MODULES
The list of modules that are reachable through the Open
Catalog is generated by an automated process that ensures
their viability in terms of exploitation. Module owners only
need to care about the development process, and incorpo-
rate new features that the automation system will receive
as input. This generates the essential assets to make them
transparently available in the production DEEPaaS service.
Along the way, new features and/or metadata are validated
to avoid disruptions, software is encapsulated in containers
and published in online repositories, and entries in the Open
Catalog are updated to reflect changes. Figure 4 outlines the
series of automated transitions that start from the initial com-
mit of a change in the model’s metadata or source code, and
eventually result in the public exploitation of the associated
model application. In the following, we describe this process
in detail.

Machine learning developers are encouraged to adopt soft-
ware development best practices [66], which are applied with
the guidance of the SQA team, in a DevOps-like environment.
Thus, relevant changes in the source code are automatically
validated through the execution of a series of static analysis
tests, which represent the Continuous Integration (CI) stage.
The diversity and scope of such tests differs among the exist-
ing modules in the project, tailored to the developer needs.
Nevertheless, there exist two essential requirements, i.e. com-
pliance with standard code styles and security analysis, that
are common to all modules.

As a consequence the resulting modules can be distributed
more safely and shared within the community, with the addi-
tional characteristic of being made up of readable and under-
standable source code. The latter is particularly beneficial for
the sustainability of the modules as it positively affects their
maintainability and usability by the external users. Addition-
ally, whenever the change involves modification of the meta-
data, the CI stage includes a supplementary check to validate
its structure according to the defined DEEP JSON schema.
Once all these tests pass successfully, the new model’s data
will appear in the Open Catalog.

The DevOps scenario combines the above described
CI implementation with a subsequent software delivery
stage. Since DEEP modules are containerized applications,

FIGURE 4. DevOps implementation covering the testing, delivery and
deployment of DEEP model applications (dotted lines represent
automated transitions).

the DevOps pipeline automatically packages each updated
model version into a container image, given successful val-
idation of the changes. The resulting image is then published
to online production repositories, readily available for con-
sumption. Following the project’s software best practices, the
modules’ coding workflow uses a branching approach where
production or stable versions are separated from the testing
ones. New container images are created based on changes
made in those branches. The latest versions for testing and
production are seamlessly pushed to the container reposito-
ries, and hence accessible through the Open Catalog. The
provision of Docker images that contain the latest stable
versions of amodule is crucial for the appropriate exploitation
of the modules, i.e. not only changes in the model’s code
repository trigger new Docker image builds, but also new
released versions of DEEPaaS. Hence, the system ensures
that no disruption is induced in the model’s performance.

The final stage deploys the new version of the model,
exposing it to the outside world through DEEPaaS. The SQA
system leverages the OpenWhisk event-driven capabilities—
through a Kafka service— to acknowledge the presence of a
new model version. OpenWhisk will then process the request
for a container’s image replacement by either superseding
the running one with the newly released or by adding a
new model, according to the previous existence of the given
model in the DEEPaaS offerings. The main outcome of the
described Continuous Deployment (CD) implementation is
the immediate availability of a new model version into the
production DEEPaaS system. Similarly to the CI case, this
stage also covers the processing and publication of the meta-
data. If changes are detected in the metadata file, those will
be reflected in the DEEP marketplace. Through a separate
pipeline, the SQA system controls which models need to be
present in the marketplace. The setup relies on an index file
containing the full list of supported entries, and rebuilds the
marketplace accordingly. Only if a given model is present in
the marketplace, this step wil be carried out in the CD stage.
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V. USE CASES
This section illustrates two different use cases that have
adopted the DEEP-Hybrid-DataCloud solutions to train an
deliver deep learning services on the Cloud. These use cases
have exploited the resources available in the DEEP-Hybrid-
DataCloud preview testbed, but the framework can exploit
other production computing infrastructures, including com-
mercial cloud providers.

A. PHYTOPLANKTON CLASSIFICATION ENGINE
The Belgian LifeWatch Observatory the Flanders Marine
Institute (VLIZ), part of the LifeWatch ERIC, harvest
monthly samples of phytoplankton at nine sampling stations
in the Belgian part of the North Sea. Phytoplankton [67]
is a key part of oceans and an indicator of the general
state of the marine ecosystem. Changes in the phytoplank-
ton community have an affect on a wide range of other
marine species. As such, monitoring plankton communities
provides valuable information to assess ecosystem health
and to research ecosystem functioning. The collected data is
then manually processed by a taxonomy expert in order to
classify the species present in the samples, requiring from the
time-consuming task of identifying and counting the different
specimens.

Moreover, the sampling is being done in a semi-automated
manner, leveraging specialized devices like FlowCAM [68].
The samples are collected and passed through the FlowCAM,
resulting in multiple large collections of (105 - 106) plankton
images. This increase in the number of digital image datasets
make manual classification tasks even more time-consuming
than before, therefore the development of an automated clas-
sification system seems like a natural task. Nowadays there
is proliferation of automatic classification methods providing
reproducible and standardized results. Deep learning tech-
niques, and more specifically, Deep Neural Networks (DNN)
are showing great achievements for detection and identifica-
tion in such problems [69].

In this context we are providing VLIZ users with the archi-
tecture depicted in Figure 5. The basic idea behind this view
is to provide scientists with tools to deploy a Phytoplankton
automated classification engine as a service leveraging the
whole DEEP stack, so that users do not need to deal with
infrastructure allocation details.

In the aforementioned architecture, the raw collected data
is stored in an mongoDB instance, an open source data base
management system (DBMS) using a document-oriented
database model supporting several types of data. Starting
from a generic image classification model present in the
marketplace, labelled data (from manual classifications pre-
viously done by taxonomists) was fetched form the database
and fed directly to build and train the CNN model using the
DEEP training facility. Once the model was trained and its
accuracy was evaluated, it is deployed as an image classi-
fication service allowing to perform inference in a fast and
horizontally scalable way.

FIGURE 5. Architecture of the solution to provide a deep learning
classification engine as a service applied to Phytoplankton classification
using the DEEP-Hybrid-DataCloud stack.

FIGURE 6. Execution time for 100 consecutive requests for the default
behaviour and the pre-warming of actions.

In order to evaluate this performance and scalability,
we have performed an initial test of performing 100 con-
secutive requests to the same endpoint, evaluating the time
required to provider a user with a response. As it is seen
in Figure 6 the first request took approximately 45 seconds
to complete, with the subsequent requests being completed
in a fraction of this time, always below 3 seconds. This is
due to the fact that, for the first invocation of the function,
the serverless framework needs to download the Docker
image into the local registry and spawn it before satisfying
the request. All the subsequent requests are able to reuse the
same Docker container, therefore the time to provide a user
with a response is only the time of the processing, not of
the aforementioned preparatory phase. This is the common
behaviour in serverless frameworks, that normally maintain
a warm pool of resources to satisfy the user requests in a
reasonable amount of time. In order to alleviate event more
this allocation time, the DEEPaaS supervisor implements
a pre-warming of all the registered functions: whenever it
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registers a new function, it performs an empty request so that
subsequent requests do not need to wait for this warming
time, as shown in Figure 6.

B. IMAGE CLASSIFICATION FOR BIODIVERSITY
We have developed a pipeline [70] that allows us to train an
image classifier to solve a new problem with practically no
code changes. Therefore we have trained several classifiers
focused on solving different biodiversity problems, as will be
detailed next.

All these applications showcase how easy it is to train new
classifier without only very small variations, starting from
an existing module from the marketplace. The most time
consuming task when training the new classifiers was, by far,
gathering and cleaning the new datasets. No time at all was
spent on dealing and adapting the deep learning code.

Moreover, as all these classifier derive from the same
codebase and expose the same API is trivial to build services
and tools around them, like classification assistants or mobile
applications for each new trained classifier.

1) PLANT CLASSIFIER
The model [71] was trained using data from iNaturalist
[72]. The dataset used comes from around 4M observa-
tions totalling around 7M images. For the final classifier we
focused on the 10K most common species. This classifier
comes in handy in this kind of citizen projects where there
are a large number of unskilled observers and only a few
experts that have to classify all the data. The neural network
can relieve the expert from the tedious job of classifying the
most common species.

2) SEEDS CLASSIFIER
This model [73], [74] was trained using a dataset from the
Spanish Royal Botanical Garden which consists of around
28000 images from 743 species and 493 genera. This clas-
sifier can prove to be helpful for farmers looking to classify
their seeds or users looking to improve their botanical skills.

3) CONUS CLASSIFIER
This model [75] was developed to respond to the needs of
a specific research group at the Spanish Royal Botanical
Garden which needed an algorithm to classify their marine
snails (Conus) images. A classifier was trained on a dataset
consisting on 28000 images from 743 species and 493 genera.
The group has since been using this classifier successfully.

VI. CONCLUSION
Many research areas are being transformed by the adoption of
machine learning and Deep Learning techniques. Research e-
Infrastructures should not neglect this new trend, and develop
services that allow scientists to adopt these techniques, effec-
tively exploiting existing computing and storage resources.
The DEEP project is paving the path for this, providing a
comprehensive set of tools for Machine Learning and Deep
Learning developers, as well as the corresponding support for

these tools at the infrastructure and platform levels. Among
the objectives of the project, there is the support to user
communities to develop their machine learning applications
and services in a way that encapsulates technical details the
end user does not have to deal with. The areas covered by
the research communities that are part of the DEEP consor-
tium are: biological and medical science, computing secu-
rity, physical sciences, citizen science and earth observation.
DEEP is a community driven project, this means that they are
the main stakeholders of DEEP and have been the key for the
design of the whole computing framework.

The next steps foreseen for the platform are the inclu-
sion of additional Machine Learning and Deep Learning
modules, providing crowd-sourcing capabilities and work-
ing with scientific communities and industry to leverage the
framework for their research. To this aim, the simplifica-
tion and the automation of the inclusion process is needed,
working together with user communities to streamline the
platform adoption to improve the SQA process to strengthen
the development and deployment of their machine learning
modules. Moreover, pursuing the implementation of paral-
lel and distributed training across several node instances is
intended as a way to provide a better efficiency. Marketplace
Improvements are also expected, allowing advanced search
queries exploiting the full potential of the module metadata,
as well as the promotion of the metadata schema. Lastly,
future activities will be devoted on the integration of the
DEEP framework into existing production e-Infrastructures,
with special focus on supporting different distributed storage
and data management systems.
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