66 research outputs found

    Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay

    Get PDF
    We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrate for the primary enzyme and, second, we explicitly account for the reversibility of the auxiliary enzyme reaction. Using singular perturbation theory, we characterize the two distinguished asymptotic limits in terms of the strength of the reverse reaction, which allows us to determine how to deduce the kinetic parameters of the primary enzyme for a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm that is applicable more generally to similar reaction networks. We demonstrate the applicability of our theory by performing enzyme assays to characterize a novel putative aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from Cupriavidus necator H16, for two different omega-amino acid substrates

    Low thrombin generation predicts poor prognosis in ischemic stroke patients after thrombolysis.

    Get PDF
    Thrombolysis by intravenous recombinant tissue plasminogen activator (rt-PA) is an effective therapy in acute ischemic stroke (AIS). Thrombin generation test (TGT) is a global hemostasis test providing information about the speed and amount of generated thrombin in plasma. Here we aimed to find out whether results of this test before the initiation of thrombolysis might predict outcomes. Study population included 120 consecutive AIS patients, all within 4.5 hours of their symptom onset, who underwent thrombolysis by rt-PA. Blood samples were collected from all patients upon admission and TGT was performed using platelet poor plasma. Clinical data of patients including the NIHSS were registered at admission, day 1 and 7 after therapy. The ASPECT score was assessed using CT images taken before and 24 hours after thrombolysis. Long-term functional outcome was defined 3 months after the event by the modified Rankin Scale. Endogenous Thrombin Potential (ETP) and Peak Thrombin were significantly lower in patients with cardioembolic IS. Symptomatic intracranial hemorrhage (SICH) was found in 6 patients and was significantly associated with low ETP and Peak Thrombin levels. A multiple logistic regression model revealed that an ETP result in the lower quartile is an independent predictor of mortality within the first two weeks (OR: 6.03; 95%CI: 1.2-30.16, p<0.05) and three months after the event (OR: 5.28; 95%CI: 1.27-21.86, p<0.05). Low levels of ETP and Peak Thrombin parameters increase the risk of therapy associated SICH. A low ETP result is an independent predictor of short- and long-term mortality following thrombolysis

    The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    Get PDF
    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging

    Subgroups of Paediatric Acute Lymphoblastic Leukaemia Might Differ Significantly in Genetic Predisposition to Asparaginase Hypersensitivity.

    Get PDF
    L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin-Frankfurt-Munster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01-0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09-0.53); p = 8.48E-04 and OR = 3.02 (1.36-6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect

    Gains to species diversity in organically farmed fields are not propagated at the farm level

    Get PDF
    Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity

    Identification of genes preferentially expressed in wheat egg cells and zygotes

    Get PDF
    Wheat genes differentially expressed in the egg cell before and after fertilization were identified. The data support zygotic gene activation before the first cell division in wheat. To have an insight into fertilization-induced gene expression, cDNA libraries have been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and twenty-six egg cell and 253 zygote-expressed EST sequences were determined. Most of the represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first time. Expression analysis of fourteen of the identified genes and three controls was carried out by real-time quantitative PCR. The preferential expression of all investigated genes in the female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal ovule parts with synergids) in comparison to the anthers, and the leaves were verified. Three genes with putative signaling/regulatory functions were expressed at a low level in the egg cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in the egg cell and the zygote, while the ones coding for unknown or hypothetical proteins exhibited differential expression patterns with preferential transcript accumulation in egg cells and/or zygotes. The obtained data support the activation of the zygotic genome before the first cell division in wheat

    Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study

    Get PDF
    Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited

    How much would it cost to monitor farmland biodiversity in Europe?

    Get PDF
    International audienceTo evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are seldom available, hampering their inclusion in policy programme budgets. Empirical data collected from 12 case studies across Europe were used in a power analysis to estimate the number of farms that would need to be sampled per major farm type to detect changes in species richness over time for four taxa (vascular plants, earthworms, spiders and bees). A sampling design was developed to allocate spatially, across Europe, the farms that should be sampled. Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting temporal changes in species numbers. These cost estimates are compared with the Common Agricultural Policy (CAP) budget (2014-2020) to determine the budgetallocation required for the proposed farmland biodiversity monitoring. Results show that the bee indicator requires the highest number of farms to be sampled and the vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring scenarios corresponded to 001%-074% of the total CAP budget and to 004%-248% of the CAP budget specifically allocated to environmental targets.Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are flexible and can be adapted or complemented with alternate data collection options (e.g. at national scale or voluntary efforts), data mobilization, data integration or modelling efforts. Editor's Choic
    corecore