32 research outputs found

    Clinical response to non-surgical periodontal treatment in patients with interleukin-6 and interleukin-10 polymorphisms

    Get PDF
    Genetic polymorphisms are commonly associated with altered transcriptional activity and possibly make individuals more susceptible to periodontal disease development, increased disease severity and poor treatment outcome. The study aimed to determine the effect of Interleukin-6 (IL-6) -572 G/C (rs1800796) and IL-10 -592 C/A (rs1800872) polymorphisms on the outcomes of non-surgical periodontal therapy in a Caucasian population. Sixty-eight patients with chronic periodontal disease were grouped according to their genotype: IL-6, IL-10, IL-6 and IL-10 susceptible (SCP) and non-susceptible (NSCP). All individuals were clinically evaluated at the first visit, and blood sample were collected from patients after checking the inclusion and exclusion criteria of the study. All patients received non-surgical periodontal therapy from a single-blinded periodontist. Clinical periodontal measurements were repeated 45 days after therapy. This population mean aged 47.63 years included 52.2% females and 58.2% non-smokers. Following DNA separation and genotyping, 65.7% of patients were homozygous carriers of the IL-6 - 572G; 49.3% were carriers of the IL-10 -592A- allele (AA and CA genotypes); and 35.8% carried SCP genotypes for both polymorphisms. The clinical parameters after therapy were not associated with the genotype status. The multiple logistic regression analysis did not show any statistically significant association between the genotypes and the variables tested. Within the limitations of this longitudinal study, it can be suggested that IL-6 -572 G/C and IL-10 -592 C/A polymorphisms as well as their combination do not influence the outcome of nonsurgical periodontal therapy in Caucasian patients diagnosed with chronic periodontal disease

    No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes

    Get PDF
    Background: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. Aim: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. Methods: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. Results: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. Conclusions: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running

    The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6<sup>th </sup>century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica).</p> <p>Results</p> <p>19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population.</p> <p>Conclusions</p> <p>Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.</p

    Effects of Greek pomegranate extracts in the antioxidant properties and storage stability of kefir

    No full text
    Background: Oxidation reactions are known to shorten the shelf life and cause damage to foods rich in fat, such as dairy products. One way to limit oxidation and increase the shelf life of fermented dairy products is to use natural antioxidants. The aim of this study was to examine the effect of adding pomegranate extracts in the antioxidant properties, rheological characteristics and the storage stability of the fermented product of kefir. Methods: The Pomegranate Juice (PGJ) and Peel Extracts (PGPE) (5%, 10% w/v) were added to kefir and the antioxidant properties were evaluated by using the methods of radical scavenging activity (DPPH) and Ferric Reducing Antioxidant Power Activity (FRAP). Spectrophotometric and instrumental methods were used to determine the Total Phenols (TPs), pH values, viscosity and flow behavioral index values of enriched with pomegranate kefir samples. The same properties were tested when kefir samples stored at 4°C for 7, 14, 21 and 28 days. Results: The addition of PGJ and PGPE results in an increase in the antioxidant activity (DPPH, FRAP) and total phenol content (TPs) of kefir samples. Increasing the concentration of the added PGJ and PGPE, results in an increase in the TP content and the DPPH activity of kefir. As far as the storage time is concerned, the results showed an increase in the amount of TP at 7th day and a reduction in the DPPH activity in the 14th day of storage. In contrary to the DPPH method, the increase in storage time has resulted in a reduction in antioxidant activity by the FRAP method. The addition of PGJ and PGPE in kefir results in a decrease in pH values while the pH of kefir samples increased during storage at 4°C for 28 days. The addition of PGJ and PGPE to kefir samples results to a decrease in viscosity and an increase in the flow behavior index. Increasing storage time results in increased flow behavior index of kefir samples. Conclusion: The addition of PGJ and PGPE increased the antioxidant activity and total phenols of the kefir product and preserved its properties during the total storage time of 28 days at 4°C. © 2019 Bentham Science Publishers

    Y-chromosomal STR haplotypes in a population sample from continental Greece, and the islands of Crete and Chios

    No full text
    Eight Y-chromosomal short tandem repeats (STRs)--DYS19, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, and DYS385--were typed in a population sample (n = 113) of unrelated males from seven different regions of Greece (Macedonia, Thessaly, Epirus, Central Greece, Peloponnese, Crete Island, and Chios Island)

    Differential Y-chromosome Anatolian influences on the Greek and Cretan Neolithic

    No full text
    The earliest Neolithic sites of Europe are located in Crete and mainland Greece. A debate persists concerning whether these farmers originated in neighboring Anatolia and the role of maritime colonization. To address these issues 171 samples were collected from areas near three known early Neolithic settlements in Greece together with 193 samples from Crete. An analysis of Y-chromosome haplogroups determined that the samples from the Greek Neolithic sites showed strong affinity to Balkan data, while Crete shows affinity with central/Mediterranean Anatolia. Haplogroup J2b-M12 was frequent in Thessaly and Greek Macedonia while haplogroup J2a-M410 was scarce. Alternatively, Crete, like Anatolia showed a high frequency of J2a-M410 and a low frequency of J2b-M12. This dichotomy parallels archaeobotanical evidence, specifically that while bread wheat (Triticum aestivum) is known from Neolithic Anatolia, Crete and southern Italy; it is absent from earliest Neolithic Greece. The expansion time of YSTR variation for haplogroup E3b1a2-V13, in the Peloponnese was consistent with an indigenous Mesolithic presence. In turn, two distinctive haplogroups, J2a1h-M319 and J2a1b1-M92, have demographic properties consistent with Bronze Age expansions in Crete, arguably from NW/W Anatolia and Syro-Palestine, while a later mainland (Mycenaean) contribution to Crete is indicated by relative frequencies of V13
    corecore