155 research outputs found

    The XMM spectral catalog of SDSS optically selected Seyfert 2 galaxies

    Full text link
    We present an X-ray spectroscopic study of optically selected (SDSS) Seyfert 2 (Sy2) galaxies. The goal is to study the obscuration of Sy2 galaxies beyond the local universe, using good quality X-ray spectra in combination with high S/N optical spectra for their robust classification. We analyzed all available XMM-Newton archival observations of narrow emission line galaxies that meet the above criteria in the redshift range 0.05<z<0.35. We initially selected narrow line AGN using the SDSS optical spectra and the BPT classification diagram. We further modeled and removed the stellar continuum, and we analyzed the residual emission line spectrum to exclude any possible intermediate-type Seyferts. Our final catalog comprises 31 Sy2 galaxies with median redshift z~0.1. X-ray spectroscopy is performed using the available X-ray spectra from the 3XMM and the XMMFITCAT catalogs. Implementing various indicators of obscuration, we find seven (~23%) Compton-thick AGN. The X-ray spectroscopic Compton-thick classification agrees with other commonly used diagnostics, such as the X-ray to mid-IR luminosity ratio and the X-ray to [OIII] luminosity ratio. Most importantly, we find four (~13%) unobscured Sy2 galaxies, at odds with the simplest unification model. Their accretion rates are significantly lower than the rest of our Sy2 sample, in agreement with previous studies that predict the absence of the broad line region below a certain Eddington ratio threshold.Comment: 12 pages, 6 figures, accepted for publication in A&

    Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report

    Get PDF
    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented

    Intra-Arterial Prostaglandin E1 Infusion in Patients with Rest Pain: Short-Term Results

    Get PDF
    Purpose. To present our results after short-term (1 month) intra-arterial infusion therapy of PGE1-alprostadil via a port system implanted in the ipsilateral external iliac artery (EIA) in patients with severe rest pain. Methods. Ten patients with severe rest pain were included. All patients showed extensive peripheral vascular disease below the knee. The tip of the catheter was introduced via a retrograde puncture in the ipsilateral external iliac artery (EIA). The patients received intraarterial infusion of PGE1, 20 mgr alprostadil daily, via the port catheter for 1 month. Results. Clinical success was evaluated according to subjective grading of pain (group A significant decrease, group B moderate decrease and group C no response). A significant decrease of rest pain was observed in 8 (group A, 80%) patients, a moderate decrease in 2 (Group B, 20%), whereas no patients demonstrated any significant response. Both patients of group B had Buergers' disease and continue to smoke during therapy. No peripheral thrombosis or clinical deterioration was noticed. Conclusion. Intraarterial infusion of PGE1 alprostadil on a daily basis, using a port catheter into the ipsilateral EIA, in selected patients with severe rest pain, seems to be very effective, without any serious complications

    The Role of Virtual Cystoscopy, after Multidetector Computed Tomography Imaging Reconstruction without the Use of Contrast Medium, in the Diagnosis and Evaluations of Bladder Tumors: Preliminary Study

    Get PDF
    Introduction. Although conventional cystoscopy is considered to be the gold standard for diagnosis and follow-up of bladder tumors, it remains an invasive and costly procedure. With the advent of the multidetector CT (MDCT) scanners supported by specialized software virtual cystoscopy (VC) is possible. We assess the role of VC in diagnosing and evaluating bladder lesions. Materials and Methods. Between September 2010 and October 2011, 25 consecutive patients with cystoscopically confirmed bladder tumor underwent VC. The radiologists involved in this prospective study were blinded to the exact findings. After draining any residual urine with a catheter, the bladder was retrogradely insufflated with 200–600 cc of air. No intravenous or intravesical contrast was used. MDCT scan was performed in supine and prone positions and three-dimensional reconstruction of the urinary bladder was performed. Results. The examination was well tolerated by all patients with no complications. In total, 43 lesions were detected both with conventional cystoscopy and VC. Tumor size measured by CT ranged from 3 to 80 mm in diameter. The pathological report revealed noninvasive transitional cell carcinomas in all cases. Conclusion. VC has promising results in detecting exophytic bladder lesions. In the future it could be part of the diagnostic algorithm for bladder tumors

    The XMM-Newton survey in the H-ATLAS field

    Get PDF
    Wide-area X-ray and far-infrared surveys are a fundamental tool to investigate the link between AGN growth and star formation, especially in the low-redshift universe (z ≲ 1). The Herschel Terahertz Large Area survey (H-ATLAS) has covered 550 deg2 in five far-infrared and sub-mm bands, 16 deg2 of which have been presented in the Science Demonstration Phase (SDP) catalogue. Here we introduce the XMM-Newton observations in the H-ATLAS SDP area, covering 7.1 deg2 with flux limits of 2 × 10-15, 6 × 10-15, and 9 × 10-15 erg s-1 cm-2 in the 0.5−2, 0.5−8, and 2−8 keV bands, respectively. We present the source detection and the catalogue, which includes 1700, 1582, and 814 sources detected by EMLDetect in the 0.5−8, 0.5−2, and 2−8 keV bands, respectively; the number of unique sources is 1816. We extract spectra and derive fluxes from power-law fits for 398 sources with more than 40 counts in the 0.5−8 keV band. We compare the best-fit fluxes with those in the catalogue, which are obtained assuming a common photon index of Γ = 1.7; we find no bulk difference between the fluxes and a moderate dispersion of s = 0.33 dex. Using the fluxes from the spectral fits wherever possible, we derive the 2−10 keV Log N−Log S, which is consistent with a Euclidean distribution. Finally, we release the computer code for the tools developed for this project.P.R. acknowledges a grant from the Greek General Secretariat of Research and Technology in the framework of the programme Support of Postdoctoral Researchers. A.D.M. acknowledges financial support from the UK Science and Technology Facilities Council (ST/I001573/I). F.J.C. acknowledges financial support by the Spanish Ministry of Economy and Competitiveness through grant AYA2012-31447.Peer Reviewe

    Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group

    Get PDF
    Whole Body Low Dose CT (WBLDCT) has important advantages as a first-line imaging modality for bone disease assessment in patients with plasma cell disorders and has been included in the 2014 International Myeloma Working Group (IMWG) criteria for multiple myeloma (MM) definition. Nevertheless, standardization guidelines for the optimal use of WBLDCT in MM patients are still lacking, preventing its more widespread use, both in daily practice and clinical trials. The aim of this report by the Bone Group of the IMWG is to provide practical recommendations for the acquisition, interpretation and reporting of WBLDCT in patients with multiple myeloma and other plasma cell disorders

    A Novel Metal-Based Imaging Probe for Targeted Dual-Modality SPECT/MR Imaging of Angiogenesis

    Get PDF
    Superparamagnetic iron oxide nanoparticles with well-integrated multimodality imaging properties have generated increasing research interest in the past decade, especially when it comes to the targeted imaging of tumors. Bevacizumab (BCZM) on the other hand is a well-known and widely applied monoclonal antibody recognizing VEGF-A, which is overexpressed in angiogenesis. The aim of this proof-of-concept study was to develop a dual-modality nanoplatform for in vivo targeted single photon computed emission tomography (SPECT) and magnetic resonance imaging (MRI) of tumor vascularization. Iron oxide nanoparticles (IONPs) have been coated with dimercaptosuccinic acid (DMSA), for consequent functionalization with the monoclonal antibody BCZM radiolabeled with 99mTc, via well-developed surface engineering. The IONPs were characterized based on their size distribution, hydrodynamic diameter and magnetic properties. In vitro cytotoxicity studies showed that our nanoconstruct does not cause toxic effects in normal and cancer cells. Fe3O4-DMSA-SMCC-BCZM-99mTc were successfully prepared at high radiochemical purity (&gt;92%) and their stability in human serum and in PBS were demonstrated. In vitro cell binding studies showed the ability of the Fe3O4-DMSA-SMCC-BCZM-99mTc to bind to the VEGF-165 isoform overexpressed on M-165 tumor cells. The ex vivo biodistribution studies in M165 tumor-bearing SCID mice showed high uptake in liver, spleen, kidney and lungs. The Fe3O4-DMSA-SMCC-BCZM-99mTc demonstrated quick tumor accumulation starting at 8.9 ± 1.88%ID/g at 2 h p.i., slightly increasing at 4 h p.i. (16.21 ± 2.56%ID/g) and then decreasing at 24 h p.i. (6.01 ± 1.69%ID/g). The tumor-to-blood ratio reached a maximum at 24 h p.i. (~7), which is also the case for the tumor-to-muscle ratio (~18). Initial pilot imaging studies on an experimental gamma-camera and a clinical MR camera prove our hypothesis and demonstrate the potential of Fe3O4-DMSA-SMCC-BCZM-99mTc for targeted dual-modality imaging. Our findings indicate that Fe3O4-DMSA-SMCC-BCZM-99mTc IONPs could serve as an important diagnostic tool for biomedical imaging as well as a promising candidate for future theranostic applications in cancer

    The XXL Survey: VI. The 1000 brightest X-ray point sources

    Get PDF
    X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). The XXL Survey spans two fields of a combined 50 deg2deg^2 observed for more than 6Ms with XMM-Newton, occupying the parameter space between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. This paper marks the first release of the XXL point source catalogue selected in the 2-10 keV energy band with limiting flux F210keV=4.81014ergs1cm2F_{2-10keV}=4.8\cdot10^{-14}\rm{erg\,s^{-1}\,cm^{-2}}. We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources and improved upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift model library. We also assign a probability to each source to be a star or an outlier. We model with Bayesian analysis the X-ray spectra assuming a power-law model with the presence of an absorbing medium. We find an average unabsorbed photon index of Γ=1.85\Gamma=1.85 and average hydrogen column density logNH=21.07cm2\log{N_{H}}=21.07 cm^{-2}. We find no trend of Γ\Gamma or NHN_H with redshift and a fraction of 26% absorbed sources (logNH>22\log N_{H}>22). We show that the XXL-1000-AGN number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2-10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z=3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area is a stepping stone between current deep fields and planned wide area surveys
    corecore