213 research outputs found

    Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer.

    Get PDF
    Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing TGCT risk. To further evaluate the association of recently proposed risk SNPs with TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 3,206 cases and 7,422 controls. Our analysis provides independent replication of the associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 × 10-2; P-meta = 3.92 × 10-8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 (P = 7.96 × 10-11; P-meta = 1.55 × 10-19; nearest gene PRTG). Case-only analyses did not reveal specific associations with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk loci with biologically plausible roles in developmental transcriptional regulation, further highlighting the importance of this phenomenon in TGCT oncogenesis

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Telomere Length Shows No Association with BRCA1 and BRCA2 Mutation Status

    Get PDF
    This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrolment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrolment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don't support the previous finding of association between hereditary breast cancer and shorter TL

    Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Case-Control Sequencing Studies

    Get PDF
    Rare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional single-marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burden-type approaches attempt to identify aggregation of RVs across case-control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for large-scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathway-level RV analysis results from a prostate cancer (PC) risk case-control sequencing study. Finally, we discuss potential extensions and future directions of this work

    Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis.

    Get PDF
    Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all-cause and prostate cancer-specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high-grade compared to low-grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all-cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer-specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression.British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration Cancer Research UK. Grant Number: C18281/A19169 RMM and Caroline Relton (Integrative Cancer Epidemiology Programme) Canadian Institutes of Health Research the European Commission's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 National Institute of Health (NIH) Cancer Post-Cancer GWAS. Grant Number: 1 U19 CA 148537-01 the GAME-ON initiative the European Community's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 the National Institutes of Health. Grant Number: CA128978 Post-Cancer GWAS initiative. Grant Numbers: 1U19 CA148537, 1U19 CA148065, 1U19 CA148112 the GAME-ON initiative the Department of Defence. Grant Number: W81XWH-10-1-0341 the Canadian Institutes of Health Research (CIHR) CIHR Team in Familial Risks of Breast Cancer Komen Foundation for the Cure Breast Cancer Research Foundation. Grant Number: Ovarian Cancer Research Fund VicHealth and Cancer Council Victoria Australian NHMRC. Grant Numbers: 209057, 251553, 504711 Cancer Council Victoria Australian Institute of Health and Welfare (AIHW) National Death Index and the Australian Cancer Database U.K. Health Technology Assessment (HTA) Programme of the NIH Research. Grant Numbers: HTA 96/20/99, ISRCTN20141297 Prodigal study and the ProMPT (Prostate Mechanisms of Progression and Treatment) National Cancer Research Institute (NCRI) Department of Health, the Medical Research Council and Cancer Research UK. Grant Number: G0500966/75466 Cancer Research UK. Grant Number: C5047/A7357 NIHR Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol FCH, DEN and JLD are NIHR Senior Investigators MRC and the University of Bristol. Grant Numbers: G0600705, MC_UU_12013/6This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/ijc.3046

    Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort.

    Get PDF
    BACKGROUND: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach. METHODS: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample. RESULTS: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high- vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77 % (95 % CI, 43-91 %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95 % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95 % CI, 0.90-0.98), but not with disease grade. CONCLUSIONS: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease.This work was supported by the World Cancer Research Fund (2011/419) and Cancer Research UK (C18281/A19169). The Integrative Epidemiology Unit (IEU) is supported by the MRC and the University of Bristol (G0600705, MC_UU_12013/19), and the Integrative Cancer Epidemiology Programme is supported by Cancer Research UK programme grant C18281/A19169. The National Institute for Health Research (NIHR) Bristol Nutrition Biomedical Research Unit is funded by the NIHR and is a partnership between University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The ProtecT study is supported by the UK NIHR Health Technology Assessment (HTA) Programme (HTA 96/20/99; ISRCTN20141297). Funding for PRACTICAL and the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/ A16565), the National Institutes of Health (CA128978), and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 – the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. We acknowledge support from the NIHR to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12916-016-0602-

    Genomic evolution shapes prostate cancer disease type

    Get PDF
    H.R.F. was supported by a Cancer Research UK Programme Grant to Simon Tavaré (C14303/A17197), as, partially, was A.G.L. A.G.L. acknowledges the support of the University of St Andrews. A.G.L. and J.H.R.F. also acknowledge the support of the Cambridge Cancer Research Fund.The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Aalternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.Peer reviewe

    Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array.

    Get PDF
    BACKGROUND: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identified so far by genome-wide association studies implicate RAD51B and RAD23B. METHODS: Genotype data from the iCOGS array were imputed to the 1000 genomes phase 3 reference panel for 21 780 PrCa cases and 21 727 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. We subsequently performed single variant, gene and pathway-level analyses using 81 303 SNPs within 20 Kb of a panel of 179 DNA-repair genes. RESULTS: Single SNP analyses identified only the previously reported association with RAD51B. Gene-level analyses using the SKAT-C test from the SNP-set (Sequence) Kernel Association Test (SKAT) identified a significant association with PrCa for MSH5. Pathway-level analyses suggested a possible role for the translesion synthesis pathway in PrCa risk and Homologous recombination/Fanconi Anaemia pathway for PrCa aggressiveness, even though after adjustment for multiple testing these did not remain significant. CONCLUSIONS: MSH5 is a novel candidate gene warranting additional follow-up as a prospective PrCa-risk locus. MSH5 has previously been reported as a pleiotropic susceptibility locus for lung, colorectal and serous ovarian cancers.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/bjc.2016.5

    The effects of height and BMI on prostate cancer incidence and mortality:a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium

    Get PDF
    Background\ud \ud Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality.\ud \ud Methods\ud \ud We conducted a case–control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man’s number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies.\ud \ud Results\ud \ud The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03).\ud \ud Conclusions\ud \ud We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease
    corecore