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Abstract

Background Epidemiological studies suggest a potential

role for obesity and determinants of adult stature in prostate

cancer risk and mortality, but the relationships described in

the literature are complex. To address uncertainty over the

causal nature of previous observational findings, we

investigated associations of height- and adiposity-related

genetic variants with prostate cancer risk and mortality.

Methods We conducted a case–control study based on

20,848 prostate cancers and 20,214 controls of European

ancestry from 22 studies in the PRACTICAL consortium.

We constructed genetic risk scores that summed each

man’s number of height and BMI increasing alleles across

multiple single nucleotide polymorphisms robustly asso-

ciated with each phenotype from published genome-wide

association studies.

Results The genetic risk scores explained 6.31 and 1.46 %

of the variability in height and BMI, respectively. There was

only weak evidence that genetic variants previously associ-

ated with increased BMI were associated with a lower

prostate cancer risk (odds ratio per standard deviation
PRACTICAL consortium is provided in appendix section.

Electronic supplementary material The online version of this
article (doi:10.1007/s10552-015-0654-9) contains supplementary
material, which is available to authorized users.

& Richard M. Martin

richard.martin@bristol.ac.uk

Neil M. Davies

neil.davies@bristol.ac.uk

1 School of Social and Community Medicine, University of

Bristol, Bristol, UK

2 MRC Integrative Epidemiology Unit, University of Bristol,

Bristol, UK

3 School of Clinical Sciences, University of Bristol,

Bristol BS10 5NB, UK

4 Nuffield Department of Surgery, University of Oxford,

Oxford, UK

5 University of Queensland Diamantina Institute, Translational

Research Institute, Brisbane, QLD, Australia

6 The Institute of Cancer Research, London SM2 5NG, UK

7 The Royal Marsden NHS Foundation Trust,

London SW3 6JJ, UK

8 Strangeways Laboratory, Centre for Cancer Genetic

Epidemiology, Department of Public Health and Primary

Care, University of Cambridge, Worts Causeway,

Cambridge, UK

9 Institute of Population Health, University of Manchester,

Manchester, UK

10 Cancer Epidemiology Centre, The Cancer Council Victoria,

615 St Kilda Road, Melbourne, VIC, Australia

11 Centre for Epidemiology and Biostatistics, Melbourne School

of Population and Global Health, The University of

Melbourne, Melbourne, VIC, Australia

123

Cancer Causes Control (2015) 26:1603–1616

DOI 10.1007/s10552-015-0654-9

http://dx.doi.org/10.1007/s10552-015-0654-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s10552-015-0654-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10552-015-0654-9&amp;domain=pdf


increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00;

p = 0.07). Genetic variants associated with increased height

were not associatedwith prostate cancer incidence (OR0.99;

95 % CI 0.97, 1.01; p = 0.23), but were associated with an

increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer

mortality among low-grade disease (p heterogeneity, low vs.

high grade \0.001). Genetic variants associated with

increased BMI were associated with an increase (OR 1.08;

95 % CI 1.03, 1.14) in all-cause mortality among men with

low-grade disease (p heterogeneity = 0.03).

Conclusions We found little evidence of a substantial

effect of genetically elevated height or BMI on prostate

cancer risk, suggesting that previously reported observa-

tional associations may reflect common environmental

determinants of height or BMI and prostate cancer risk.

Genetically elevated height and BMI were associated with

increased mortality (prostate cancer-specific and all-cause,

respectively) in men with low-grade disease, a potentially

informative but novel finding that requires replication.

Keywords Height � Body mass index � Prostate cancer �
Mendelian randomization � Single nucleotide

polymorphisms � Instrumental variables analysis

Introduction

Prostate cancer is the most common male cancer in Europe

and North America, but the robust identification of poten-

tially modifiable risk factors has proven elusive [1]. Epi-

demiological studies suggest a potential role for obesity

[2–5] and determinants of adult stature [6], but the

relationships described in the literature are complex [7–9].

Inverse associations have generally been observed between

adiposity and localized prostate cancer, but associations are

largely positivewith advanced or high-grade [2, 10] and fatal

[3] cancer and may vary in direction depending on whether

obesity was observed in early ormiddle to late adulthood [4].

Adult stature is generally positively associated with prostate

cancer, although associations may be stronger for fatal [11]

or high- compared with low-grade disease [6].

The explanation for these associations is unclear. Obser-

vations regarding obesity could be due to confounding by

common causes of both obesity and prostate cancer (e.g.,

calorie and dietary fat intake) [12]; the mitogenic hormones

insulin and insulin-like growth factor-I [13, 14]; delayed

detection in obese men [8, 9]; or a real biological effect [15].

Observed height associations could reflect early-life envi-

ronmental (e.g., fetal, dietary, social, hormones, and psy-

chological circumstances) or shared genetic contributions to

stature and prostate cancer risk [16–18].

Genetic epidemiological studies are less susceptible to

confounding than observational epidemiology. This is

because conditional on population structure, genetic variants

are more likely to be independent of later environment and

lifestyle factors [19]; they are also unlikely to be affected by

reverse causation. Thus, the existence of genetic variation in

obesity and height can provide robust evidence about how

associations of phenotypes, in this case obesity and height,

with diseases arise [15].We previously reported that a single

nucleotide polymorphism (SNP) associated with obesity

(FTO rs9939609-A) was inversely associated with low-

grade prostate cancer (odds ratio, OR 0.90 per A allele; 95 %

CI 0.81, 0.99; p = 0.03), but positively associatedwith high-
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grade cancer (OR 1.16; 0.99, 1.37; p = 0.07) [15]. These

data suggest that the comparable observational associations

between adiposity phenotypes and prostate cancer outcomes

are not confounded. However, the evidence for these effects

was weak, originating from a single study of moderate size

(1,550 cases) using only a single variant, and there is no

evidence we are aware of linking genetic variation in height

with prostate cancer. The results, therefore, require confir-

mation and extension in larger datasets, using height- and

additional adiposity-related genetic variants.

Our aim was to use genetic variation in height and body

mass index (BMI) as unconfounded exposures to investi-

gate the causal associations of obesity and stature with

prostate cancer risk and outcomes (Mendelian randomiza-

tion [20]). Instead of the single-variant, single-sample

approach used previously, we employ a more powerful

two-sample, multiple-variant approach [21, 22] that com-

bines several polymorphisms (based on confirmed genetic

variant-intermediate phenotype associations [23, 24]) into

genetic risk scores in order to explain more of the variance

in BMI and height exposures and thus increase power and

avoid weak instrument bias [21].

Methods

Participants in this study were men of European genotypic

ancestry from 22 independent studies contributing to the

international PRACTICAL Consortium (PRostate cancer

AssoCiation group To Investigate Cancer-Associated

aLterations in the genome, http://www.practical.ccge.

medschl.cam.ac.uk) [25, 26]. The individual studies are

described at http://www.nature.com/ng/journal/v45/n4/

extref/ng.2560-S1.pdf, with summary data in Table 1. Of the

studies within the PRACTICAL Consortium at the time of

data extraction, we excluded the EPIC-Norfolk, CAPS, and

SEARCH studies (involving 3,005 cases and 2,825 controls),

because they were included in the genome-wide studies that

originally detected the height and BMI genetic variants [23,

24]. Cancers were categorized as low grade (Gleason

score B 6) or high grade (Gleason score C 7) and localized

(T1 or T2 on TNM staging, or if not available, ‘‘localized’’ on

SEER staging) or advanced (T3 or T4 on TNM staging, or if

not available, ‘‘regional’’ or ‘‘distant’’ on SEER staging). All

studies met the appropriate ethical criteria for each country in

accordancewith the principles embodied in theDeclaration of

Helsinki.

Genotyping

Genotyping was carried out using an Illumina Custom

Infinium genotyping array (iCOGS), designed for the

Collaborative Oncological Gene-environment Study

(COGS), and consisted of 211,155 SNPs (details at http://

ec.europa.eu/research/health/medical-research/cancer/fp7-

projects/cogs_en.html) [25, 26]. This array was devised to

evaluate genetic variants for associations with breast, ovar-

ian, and prostate cancer; 68,638 were specifically chosen for

their potential relevance to prostate cancer. The remaining

125,877 SNPs measured by the array were chosen for
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Génotypage, Evry, France

43 McGill University-Génome Québec Innovation Centre,
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relevance to other cancers and common SNPs which had

been previously associated with any trait. Participants with

low call rates (\95 %) and high or low heterozygosity

(p\ 1 9 10-5) were excluded; 201,598 SNPs passed

quality control for the European ancestry samples. We used

these genotypic data to impute 2.6 million SNPs based on

the HapMap 2 CEU reference panel and using IMPUTE2

software [27]. We excluded poorly imputed SNPs

(R2\ 0.3).

Constructing genetic risk scores for BMI and height

We constructed genetic risk scores [21] for height and BMI

using 179 and 32 variants, respectively, previously reported

in genome-wide association studies (GWAS) to be asso-

ciated with height [23] and BMI [24]. We used allele

dosages from the imputation to construct the genetic risk

score. The dosages code each SNP continuously from 0 to

2, and the dosages across all SNPs are summed to estimate

Table 1 Clinical characteristics of the men in each of the studies contributing to the PRACTICAL consortium (n = 41,062)

Study Country n Mean %

Controls Cases Age at

diagnosis

(years)

PSA at

diagnosis

(ng/ml)

Screen

detectedb

(%)

Family history

prostate cancer

Gleason

score

8–10

Advanced

stage (T3 or

T4)

Distant

spread

(SEER)

CPCS1 Denmark 2,771 848 69.5 48.0 0.0 8.2 35.0 – –

CPCS2 Denmark 1,009 265 64.9 36.0 0.0 14.7 10.6 – –

EPIC Europea 1,079 722 64.9 19.7 0.0 – 3.6 3.8 0.9

ESTHER Germany 318 313 65.5 58.7 61.9 8.9 9.1 26.4 3.4

FHCRC USA 730 761 59.7 16.1 – 21.7 10.4 – 2.6

IPO-Porto Portugal 66 183 59.3 8.3 82.8 20.0 15.8 64.5 0.0

MAYO USA 488 767 65.2 15.5 73.7 29.1 33.0 44.4 0.5

MCCS Australia 1,169 1,698 58.5 136.6 – 23.4 11.0 14.0 0.8

MEC USA 829 819 69.5 – – 13.0 36.0 – 2.8

MOFFITT USA 100 412 64.9 7.3 0.0 22.9 11.2 3.5 0.5

PCMUS Bulgaria 140 151 69.3 32.5 21.2 5.3 29.8 42.4 18.5

PPF-UNIS UK 176 244 68.9 32.0 – 25.3 10.9 25.7 9.0

Poland Poland 359 438 67.7 40.2 0.0 10.6 14.0 36.8 2.8

ProMPT UK 1 166 66.3 33.0 0.0 34.6 18.9 32.7 7.8

ProtecT UK 1,474 1,542 62.8 9.6 100.0 7.9 5.7 11.3 0.4

QLD/

ProsCan

Australia 87 186 61.3 6.7 – 36.2 4.0 0.0 0.0

STHMI Sweden 2,224 2,002 66.2 – – 20.2 10.2 14.2 1.6

TAMPERE Finland 2,413 2,753 68.2 69.1 46.8 – 15.4 21.0 7.3

UKGPCS UK 4,182 4,549 63.8 83.9 28.9 23.4 17.2 32.9 10.7

ULM Germany 354 601 63.8 19.1 – 44.9 15.5 39.9 1.1

UTAH USA 245 440 62.6 – – 51.4 16.1 – 4.7

WUGS USA 0 988 60.8 6.2 – 42.3 7.9 24.2 0.1

Studies: Copenhagen Prostate Cancer Study 1 (CPCS1); Copenhagen Prostate Cancer Study 2 (CPCS2); European Prospective Investigation Into

Cancer and Nutrition (EPIC); Epidemiological investigations of the chances of preventing, recognizing early and optimally treating chronic

diseases in an elderly population (ESTHER); Fred Hutchinson Cancer Research Center (FHCRC); Portuguese Oncology Institute, Porto (IPO-

Porto); Mayo Clinic (MAYO); Melbourne Collaborative Cohort Study (MCCS); Multiethnic Cohort Study (MEC); The Moffitt Group

(MOFFITT); Prostate Cancer study Medical University Sofia (PCMUS); Prostate Project Foundation-Postgraduate Medical School, Surrey (PPF-

UNIS); The Poland Group (Poland); Prostate cancer: Mechanisms of progression and Treatment (ProMPT); Prostate testing for cancer and

Treatment (ProtecT); Retrospective Queensland Study (QLD) and the Prostate Cancer Supportive Care and Patient Outcomes Project (ProsCan);

Stockholm 1 (STHMI); Finnish Genetic Predisposition to Prostate Cancer Study (TAMPERE); U.K. Genetic Prostate Cancer Study and The

Prostate Cancer Research Foundation Study (UKGPCS); Familial Prostate Cancer Study Ulm (ULM); UTAH Study (UTAH); Washington

University Genetics Study (WUGS)
a Germany, Greece, Italy, Netherlands, Spain, Sweden, Oxford
b Studies with 0 % screen detected are entirely based on clinically detected cases, and studies with no information about method of detection

have a missing value; 12,231 individuals have information of method of detection
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the number of height or BMI increasing risk alleles per

man. Each genetic variant was given a weight equal to the

effect of the variant on height or BMI reported by the

previous GWASs [23, 24]. The genetic risk score is

therefore a weighted sum of the estimated number of risk

alleles across several genotypes, which can improve the

precision of the results compared to an unweighted score

[21]. Supplementary Tables 1 and 2 provide details of the

variants used and weights assigned.

Statistical analysis

We estimated associations of the genetic risk scores with

measured height and BMI using linear regression based on

1,270 men without prostate cancer [i.e., prostate-specific

antigen (PSA) level\3.0 ng/ml or men with a raised PSA

but who were biopsy negative] from the ProtecT popula-

tion-based study [15, 28], one of the PRACTICAL studies

with the relevant phenotypic data in a well-defined control

group. We computed F statistics and R2 values (the pro-

portion of variation in height and BMI explained by the

genetic risk score) from the linear regression to evaluate

the strength of the genetic risk score instruments in a

population of men at increased risk of cancer. We had 82

and 78 % power to detect an odds ratio of 1.12 and 1.25 for

the effects of height and BMI on prostate cancer risk,

assuming a sample size of 41,062 and that the genetic risk

scores explained 6.31 and 1.46 % of the variation in height

and BMI, respectively [29].

We investigated associations of the phenotypes (height

and BMI) and the genetic risk scores (for height and BMI)

with measured covariables in the ProtecT cases to assess

whether the scores were likely to be independent of

potential environmental confounding factors and to assess

the potential for pleiotropy (genetic confounding). We

included the following potential confounders: diabetes;

occupation (managerial vs. nonmanagerial); exercise

(strenuous; moderate or strenuous, vs. light); alcohol intake

(three or more drinks a week vs. two or less); smoking

(passive, current, or ex-smoker vs. never); diagnostic PSA

level; and age at recruitment. We investigated whether the

scores predicted circulating insulin-like growth factor

(IGF-I) levels (a potential mechanism linking size with

prostate cancer [13, 14]) and benign prostatic hyperplasia

(a potential cause of detection bias [30]).

We assessed the relationship of the height and BMI

genetic risk scores with prostate cancer risk, stage, and

grade across all 22 eligible studies contributing to PRAC-

TICAL using logistic regression to compute ORs, with

robust standard errors to account for within-study cluster-

ing. The genetic risk score was standardized to mean zero

and standard deviation one, and the ORs were parameter-

ized as the change in outcome per standard deviation

increase in genetic risk score. In a secondary analysis, we

also computed ORs comparing the highest versus the

lowest quintile of each genetic risk score to illustrate the

differences in outcomes between the extremes of the BMI

or height allele score distributions. This reduced form, the

association of the instrument (the genetic risk score) with

the outcome, is a valid test of the direction of the effect of a

phenotype on an outcome [31, 32]. We investigated

between-study heterogeneity by estimating the logistic

regressions individually for each study and using the Stata

metan command to estimate the I2 statistic assuming a

fixed-effect model. As we found little evidence of hetero-

geneity, we report the ORs from the logistic regression

analyses conducted across the 22 included studies.

We calculated ORs for all prostate cancers and then

separately for localized versus advanced and low-grade

(Gleason score B 6) versus high-grade (Gleason

score C 7) cancers. Among men with prostate cancer

(case-only analysis), we estimated associations of the

standardized height and BMI weighted genetic risk scores

with all-cause and prostate cancer-specific mortality using

Cox proportional hazards regression, with age at diagnosis

as the start date and age at death or final follow-up time-

point as the exit date, with standard errors clustered by

study (there was no evidence that the proportional hazards

assumption was violated). We tested for heterogeneity in

association of the genetic risk scores with localized versus

advanced and low- versus high-grade prostate cancer risk

using a multivariate logistic regression. We tested for

heterogeneity in the association of the genetic risk scores

and survival of patients with localized versus advanced and

low versus high grade using the test proposed by Altman

and Bland [33].

Sensitivity analyses

We assessed the potential for pleiotropy, since it is possible

that variants identified in the genome-wide scans are not

specific for height or BMI and have effects on the prostate

cancer outcomes independent of their effects on the

exposures (height or BMI) [34]. If the no-effect modifica-

tion assumption holds, similar instrumental variable esti-

mates acquired using independent instruments would

provide suggestive evidence against an influence of pleio-

tropic effects, as it is unlikely that they have shared

pleiotropy [21, 35]. Therefore, as a sensitivity analysis we

tested for evidence of heterogeneity across different SNPs

for each of our baseline results which differed from the

null. We generated two independent genetic instruments

for BMI using (1) rs1558902 in FTO, the individual SNP

with the largest effect size in the meta-analysis of GWASs

for BMI [24] and (2) a weighted allelic score constructed

from the remaining BMI-associated SNPs. We randomly
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split the height allele score into two independent weighted

scores containing 89 and 90 SNPs (for details of the SNPs

in each score see Supplementary Table 3). The height

SNPs were in linkage equilibrium, and hence, these scores

were statistically independent. We estimated the associa-

tion of each instrument with prostate cancer and tested for

heterogeneity [33].

The top eight principal components that reflect the

population’s genetic structure were estimated and included

as covariates in adjusted regression models to account for

confounding by population stratification. We also report

the associations of the genetic risk scores with survival

additionally adjusted for PSA level, grade, and stage. We

ran all statistical analyses in Stata version 13.1 (StataCorp

LP, 2014, College Station, TX).

Results

Our sample consisted of 20,848 cases and 20,214 controls

of European genetic descent, with genotypic data from the

iCOGs array that had passed quality control and was not

included in the GIANT consortium used to generate the

genetic risk scores (EPIC-Norfolk, CAPS, and SEARCH

studies) (Table 1). The percentage of high-grade cancers

reported varied between studies (3.6–35.0 %), as did the

proportion of advanced stage cancers (3.5–64.5 %). The

case-only survival analysis was based on 15,491 men,

because 5,357 of the 20,848 men with prostate cancer did

not have age at entry or exit in the dataset.

Associations of genetic risk scores with measured

height and BMI in ProtecT

Associations of the weighted genetic risk scores with

height and BMI in the ProtecT sub-sample are shown in

Table 2. The results with the unweighted score were sim-

ilar, but less precise (results not shown). The genetic risk

scores explained 6.31 and 1.46 % of the variability in

height and BMI, respectively, consistent with previous

studies [23, 24], which suggest that the genetic risk scores

are strong instruments for the phenotypes.

Associations of genetic risk scores with potential

confounders in ProtecT

Taller men were more likely to have managerial jobs, have

lower PSA levels, and have joined the ProtecT study at a

younger age (Table 3), but there was little evidence that the

height genetic risk score was associated with any of the

confounders except benign hypertrophy of the prostate (all

p values [0.05). Heavier men were more likely to have

diabetes; be inactive; drink fewer than 3 drinks a week; be

a nonsmoker; and have lower IGF-I levels (Table 3), but

we found little evidence that the BMI genetic risk score

was associated with any of the potential confounders (all

p values[0.05).

Association of the genetic risk scores and prostate

cancer risk and mortality

Associations of the genetic risk scores for height and BMI

with prostate cancer risk are shown in Table 4, with the

study-specific estimates in Supplementary Figures 1–10.

There was little consistent evidence that the genetic risk

score for height was associated with prostate cancer,

although there was weak evidence of an inverse association

with advanced prostate cancer [OR, per standard deviation

increase in height genetic score 0.96; 95 % CI 0.93, 0.99,

p = 0.01; p heterogeneity, advanced vs. localized 0.05].

There was weak evidence that the genetic risk score for BMI

was associated with a reduced prostate cancer risk (OR per

standard deviation increase in BMI genetic score 0.98; 95 %

CI 0.96, 1.00; p = 0.07), but little evidence of variation by

stage or grade (p heterogeneity 0.64 and 0.13, respectively).

The height genetic risk score was associated with an

increase in prostate cancer-specific mortality among men

with low-grade disease (OR per standard deviation increase

in the height score 1.13; 95 % CI 1.08, 1.20, p hetero-

geneity, low vs. high grade \0.001), but there was little

evidence of associations with all-cause mortality (Table 5).

The BMI genetic risk score was associated with higher all-

cause mortality among low-grade disease (OR per standard

deviation increase in the BMI score 1.08; 95 % CI 1.03,

1.14, p heterogeneity low vs. high grade = 0.03), but there

was little evidence of associations with prostate cancer-

specific mortality.

Table 2 Association of

weighted height and BMI

genetic risk scores with

measured height and weight in

907 controls in ProtecT [28]

n Mean difference 95 % CI r2 (%) F-statistic

Lower limit Upper limit

Height 907 0.26 0.20 0.33 6.31 67.6

BMI 901 0.12 0.06 0.19 1.46 13.6

To allow direct comparison of effect sizes, BMI and height phenotypic measurements and the genetic risk

scores were normalized to mean zero and standard deviation one
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Table 3 Odds ratio or change in continuous variable covariates per standard deviation change in either height and BMI (phenotypes) or genetic

risk scores for height and BMI (instruments) in the ProtecT study cases [28]

n Observed phenotypea Genetic risk scoresa

Effect

estimate

Confidence intervalb p value Effect

estimate

Confidence intervalb p value

Lower Upper Lower Upper

Standardized height Odds ratioc Odds ratioc

Binary variables

Diabetes 726 0.91 0.64 1.30 0.62 0.94 0.70 1.25 0.66

Managerial occupation 818 1.21 1.06 1.40 0.006 0.91 0.79 1.04 0.17

Strenuous exercise 621 1.13 0.96 1.33 0.13 1.03 0.87 1.21 0.75

Moderate or strenuous exercise 621 1.15 0.96 1.37 0.12 1.01 0.85 1.20 0.90

C3 drinks in the last week 820 1.13 0.98 1.30 0.09 1.05 0.91 1.22 0.47

Passive smoker 752 1.03 0.89 1.19 0.72 1.00 0.86 1.16 0.99

Ever smoker 780 1.10 0.95 1.27 0.21 1.08 0.93 1.25 0.33

Current smoker 552 1.09 0.89 1.35 0.40 1.21 0.97 1.51 0.08

Benign hypertrophy of the prostate 704 0.77 0.58 1.02 0.07 1.38 1.01 1.88 0.05

Regression coefficientc Regression coefficientc

Continuous variables

PSA (ng/ml) 828 -1.15 -2.01 -0.29 0.009 -0.31 -1.32 0.70 0.55

IGF-I (ng/ml) 718 1.80 -2.23 5.83 0.38 -2.53 -6.31 1.25 0.19

Age (years) 1,109 -0.53 -0.83 -0.24 \0.001 0.07 -0.23 0.38 0.64

Standardized BMI Odds ratioc Odds ratioc

Binary variables

Diabetes 724 1.90 1.45 2.48 \0.001 1.16 0.86 1.57 0.33

Managerial occupation 813 0.96 0.83 1.10 0.54 0.91 0.79 1.05 0.20

Strenuous exercise 617 0.91 0.77 1.08 0.28 1.05 0.89 1.23 0.57

Moderate or strenuous exercise 617 0.80 0.66 0.96 0.02 1.01 0.85 1.20 0.94

C3 drinks in the last week 814 0.87 0.75 1.01 0.07 0.90 0.78 1.04 0.17

Passive smoker 748 1.12 0.97 1.30 0.13 0.97 0.84 1.12 0.65

Ever smoker 776 1.09 0.93 1.27 0.29 1.09 0.94 1.27 0.25

Current smoker 548 0.71 0.54 0.94 0.02 1.18 0.95 1.48 0.13

Benign hypertrophy of the prostate 700 0.92 0.69 1.23 0.56 0.94 0.71 1.25 0.66

Regression coefficientc Regression coefficientc

Continuous variables

PSA (ng/ml) 822 -0.25 -1.55 1.05 0.70 -0.21 -0.96 0.54 0.58

IGF-I (ng/ml) 714 -5.38 -9.12 -1.64 0.005 1.77 -1.97 5.51 0.35

Age (years) 1,101 -0.28 -0.60 0.04 0.08 -0.04 -0.33 0.25 0.79

a Observed phenotypes and genetic risk scores normalized to mean zero and standard deviation one
b Robust standard errors
c Odds ratio or change in continuous variable per standard deviation change in height and BMI (phenotype or genetic risk score)
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Sensitivity analysis

Prostate cancer risk

There was little evidence that men with height variants

with larger effects on the height phenotype were more or

less likely to be diagnosed with prostate cancer

(r2 = 0.0071) (Fig. 1; see Supplementary Table 4 for

associations of each of the height variants with prostate

cancer risk). There was some evidence that BMI variants

with the largest effect on BMI were most strongly inversely

associated with prostate cancer (r2 = 0.0231) (Fig. 2;

Supplementary Table 5 for associations of each of the BMI

variants with prostate cancer risk). We found little evi-

dence of heterogeneity in the effect of BMI proxied by

independent instruments based on independent genetic

scores made up of different sets of SNPs. Individuals with

more BMI increasing FTO alleles were less likely to be

diagnosed with prostate cancer (OR per BMI increasing

allele rs1558902-A 0.97; 95 % CI 0.94, 1.01, p = 0.10). In

line with this, the allele score based on the remaining 31

BMI SNPs was also inversely associated with prostate

cancer (OR per standard deviation increase in BMI genetic

score excluding FTO 0.99; 95 % CI 0.97, 1.01, p = 0.33;

p value for heterogeneity between the two independent

instruments = 0.38).

All-cause mortality

There was little evidence that the two sets of independent

height or BMI allele scores were associated with an

increased risk of all-cause mortality in men diagnosed with

prostate cancer (see Supplementary Table 10 for associa-

tions of all 179 height SNPs and all-cause mortality and

Supplementary Table 7 for associations of each of the 32

BMI SNPs with all-cause mortality and prostate cancer-

specific mortality).

Prostate cancer-specific mortality

Both sets of independent height allele scores were associ-

ated with an increased risk of prostate cancer-specific

mortality in men diagnosed with low-grade prostate cancer

(hazard ratio per one standard deviation increase in the first

height allele score 1.10; 95 % CI 1.03, 1.19, p = 0.008;

and in the second height allele score 1.09; 95 % CI 1.05,

1.13, p\ 0.001; p value for heterogeneity = 0.86; see

Table 4 Odds ratio of prostate cancer per one standard deviation change in height or BMI genetic score

n Unadjusted Adjusteda

Odds

ratioc
Confidence

intervalb
p value Odds

ratioc
Confidence

intervalb
p value p heterogeneityd

Lower Upper Lower Upper

Height

Controls 20,214 1.00 – – – 1.00 – – – –

All prostate cancers 20,848 0.96 0.91 1.01 0.12 0.99 0.97 1.01 0.23

Localized prostate cancer 12,975 0.96 0.88 1.03 0.27 1.00 0.98 1.02 0.72 0.05

Advanced prostate cancer 4,325 0.90 0.83 0.98 0.02 0.96 0.93 0.99 0.01

Low-grade prostate cancer 8,784 0.96 0.90 1.02 0.20 0.99 0.96 1.01 0.30 0.55

High-grade prostate cancer 8,230 0.97 0.92 1.02 0.26 1.00 0.98 1.02 0.85

BMI

Controls 20,214 1.00 – – – 1.00 – – – –

All prostate cancers 20,848 0.98 0.96 1.01 0.15 0.98 0.96 1.00 0.07

Localized prostate cancer 12,975 0.98 0.96 1.00 0.10 0.98 0.96 1.00 0.05 0.64

Advanced prostate cancer 4,325 1.01 0.97 1.05 0.69 1.01 0.97 1.05 0.62

Low-grade prostate cancer 8,784 0.98 0.94 1.02 0.25 0.97 0.94 1.00 0.09 0.13

High-grade prostate cancer 8,230 1.00 0.97 1.02 0.69 1.00 0.98 1.01 0.65

a Adjusted for the eight principal components of population stratification
b Based in robust standard errors to account for within-study clustering
c Change in odds ratio per standard deviation change in height and BMI genetic risk score (standardized to mean zero standard deviation one)
d Localized versus advanced, or high- versus low-grade using multivariate logistic regression
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Supplementary Table 8 for the association of prostate

cancer-specific mortality and each of the 179 height SNPs).

None of the BMI independent instruments or individual

SNPs were associated with prostate cancer-specific mor-

tality (Supplementary Table 9). Further adjusting the

associations of the genetic risk scores and survival for PSA

level, grade, and stage made no substantial differences to

the results (Supplementary Table 10).

Discussion

We found weak evidence that genetically elevated BMI

was associated with a reduced risk of prostate cancer, but

that genetically elevated height was not associated with

prostate cancer risk. The height and BMI allele scores were

positively associated with prostate cancer-specific and all-

cause mortality, respectively, but only among men with

low-grade disease (p heterogeneity, low- vs. high-grade

prostate cancer\0.05).

Although evidence for these associations was relatively

weak, the inverse relationship of BMI with prostate cancer

risk is in line with both observational data [8] and our

previous genetic study [15]. The latter report showed an

inverse relationship of a single obesity-related SNP (FTO

rs9939609) with overall- and low-grade prostate cancer in

ProtecT, a much smaller population-based sample of 1,550

screen-detected prostate cancers and 1,815 controls [15].

We found inverse associations of a related SNP in FTO

(rs1558902, which is in linkage disequilibrium with

Table 5 Hazard ratio of all-cause and prostate cancer-specific mortality among men with prostate cancer per one standard change in height or

BMI genetic score

Number of

participants

Number

of

failures

Years at

risk

(1000s)

Unadjusted Adjusteda

Hazard

ratioc
Confidence

intervalb
p value Hazard

ratioc
Confidence

intervalb
p value p heterogeneityd

Lower Upper Lower Upper

All-cause mortality

Height

All cases 14,649 3,591 105 1.02 0.97 1.08 0.47 1.00 0.96 1.04 0.88

Localized 8,553 1,447 65 1.01 0.93 1.09 0.81 1.00 0.93 1.07 0.97 0.20

Advanced 3,435 1,332 25 1.08 0.98 1.18 0.11 1.07 0.99 1.14 0.07

Low grade 5,684 905 43 1.04 0.97 1.11 0.32 1.02 0.95 1.09 0.57 0.80

High grade 5,892 1,365 36 1.02 0.97 1.08 0.36 1.01 0.96 1.06 0.71

BMI

All cases 14,649 3,591 105 1.02 0.99 1.05 0.18 1.02 0.99 1.05 0.23

Localized 8,553 1,447 65 1.04 0.99 1.10 0.09 1.04 0.99 1.10 0.09 0.28

Advanced 3,435 1,332 25 1.01 0.98 1.04 0.50 1.01 0.98 1.05 0.59

Low grade 5,684 905 43 1.09 1.04 1.15 0.001 1.08 1.03 1.14 0.002 0.03

High grade 5,892 1,365 36 1.00 0.96 1.05 0.89 1.00 0.95 1.05 0.98

Prostate cancer-specific mortality

Height

All cases 14,649 1,483 105 1.02 0.98 1.06 0.44 1.00 0.97 1.04 0.87

Localized 8,553 363 65 0.98 0.91 1.07 0.72 0.99 0.91 1.08 0.79 0.29

Advanced 3,435 745 25 1.05 1.00 1.10 0.06 1.04 1.00 1.09 0.07

Low grade 5,684 188 43 1.13 1.06 1.21 \0.001 1.13 1.08 1.20 \0.001 \0.001

High grade 5,892 678 36 0.97 0.93 1.02 0.20 0.97 0.93 1.01 0.19

BMI

All cases 14,649 1,483 105 0.99 0.96 1.03 0.76 1.00 0.96 1.04 0.94

Localized 8,553 363 65 0.95 0.88 1.03 0.22 0.95 0.87 1.05 0.31 0.09

Advanced 3,435 745 25 1.04 0.98 1.10 0.18 1.05 0.99 1.10 0.11

Low grade 5,684 188 43 0.95 0.89 1.01 0.08 0.95 0.88 1.01 0.12 0.03

High grade 5,892 678 36 1.05 0.99 1.11 0.12 1.05 0.98 1.13 0.14

a Adjusted for the first eight principal components of population stratification
b Based in robust standard errors to account for within-study clustering
c Change in hazard ratio per standard deviation change in height and BMI genetic risk score (standardized to mean zero standard deviation one)
d Localized versus advanced, or high- versus low-grade using Bland–Altman tests
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rs9939609 at r2 = 0.90) with overall and low-grade pros-

tate cancer risk (individuals with more BMI increasing

alleles had a reduced risk of all prostate cancer and low-

grade prostate cancer, respectively (OR 0.97; 95 % CI

0.94, 1.00; p = 0.10, and OR 0.95; 95 % CI 0.90, 1.00;

p = 0.06). A previous study that created genetic risk scores

for BMI using 24 of the 32 SNPs from the BMI GWAS

[36] observed ORs for the BMI risk scores of 1.00 (95 %

CI 0.97, 1.04; p = 0.94) for the unweighted score and 1.07

(95 % CI 0.91, 1.25; p = 0.41) for the weighted score, but

the effect estimates were imprecise as the study only

included 871 cases and 906 controls.

To determine whether our findings reflect clinically

important differences in disease risk, we rescaled the

results to report the effects of one standard deviation

changes in height and one kg/m2 increases in BMI using

the coefficients for the effects of the SNPs on height and

BMI reported by Lango Allen et al. [23] and Speliotes et al.

[24], respectively. Our results imply that a one standard

deviation increase in height was associated with a 49 %

(95 % CI 26 %, 76 %, p\ 0.001) increase in prostate

cancer mortality among those with low-grade disease,

assuming that the height allele score explains 10 % of the

variation in height [23]. A 1 kg/m2 increase in BMI was

associated with a 4 % (95 % CI 0 %, 8 %, p = 0.07)

reduced risk of any prostate cancer diagnosis (assuming

that the BMI allele score explains 1.45 % of the variation

in BMI [24] and a standard deviation of BMI of 3.5 kg/m2).

The risk of all-cause mortality was increased by 21 %

(95 % CI 7 %, 37 %) per kg/m2 increase in BMI among

men with low-grade disease.

Our finding that genetic variation in height was not

associated with an increase in prostate cancer risk is in

contrast to the majority of the observational literature [6].

Indeed, we found weak evidence of an inverse association

of genetic variation in height with advanced prostate can-

cer. However, there is some evidence of reporting bias in

the previous literature; 12 of 30 prospective studies that

reported effects of height on prostate cancer only in the

body of the manuscript, and which were not highlighted in

the title or abstract, were null (pooled OR 1.01; 0.95–1.07;

I2 0 %) [6]. The absence of a positive association of genetic

variation in height with prostate cancer risk in the current

study may reflect that there is no real effect of height on

prostate cancer risk or that it is the environmental (espe-

cially early-life factors [37, 38]) and not genetic compo-

nent of height variation that explains its positive link in

some studies with incident prostate cancer [16–18, 39].

Alternatively, if height is associated with very early case-

fatality in men with prostate cancer, then this will remove

cases from the pool available for case–control studies and

could theoretically lead to selection bias causing null

findings. However, prostate cancer is not generally so

rapidly fatal as to preclude significant numbers of men

from being included in case–control studies.

The height and BMI allele scores were positively asso-

ciated, respectively, with prostate cancer-specific and all-

cause mortality, but only strongly among men with low-

grade disease. The positive association of BMI and height

with mortality among men with prostate cancer is in line

with earlier studies [9, 11, 40], although previous findings

for height have been inconsistent [41, 42], and one study

observed that taller men with prostate cancer had improved

survival [43]. Our data suggest that only height is associ-

ated with prostate cancer-specific, rather than all-cause,

mortality, and that BMI causes a broader range of deaths

among men with prostate cancer.

The difference in the magnitude of effect estimates by

grade does not appear to have been reported in the past and

could simply be a chance finding. However, the p values

for heterogeneity for the association of the BMI allele score

with all-cause mortality and the height allele score with
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Fig. 1 Scatter plot of effects of SNPs on prostate cancer risk by their

effects on height
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Fig. 2 Scatter plot of effects of SNPs on prostate cancer risk by their

effects on BMI
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prostate cancer-specific mortality by grade were 0.03 and

\0.001, respectively. The findings could, therefore, reflect

differing determinants of progression depending on grade.

This highlights the potential for modifying BMI in people

with low-grade disease; however, it is likely that the

genetic contribution to height explains the association of

the height genetic score with prostate cancer progression.

Such genetic influences could include effects on insulin-

like growth factors (IGFs), which have been associated

with progression of prostate cancer [44].

The strengths of the study include (1) the robust

instruments developed from previous GWAS that

explained a reasonable proportion of the variance in the

phenotypes of interest, (2) the large sample size, and (3) the

potential confounders which were associated with mea-

sured height and BMI within the ProtecT study were not

associated with the genetic risk scores for height and BMI.

The final point suggests that association of genetic risk

scores with prostate cancer outcomes is unlikely to be

explained by confounders. Evidence from genetic variation

is less likely to suffer from biases that affect conventional

observational studies. The generalizability of our findings

is supported by broadly consistent results across the 22

studies. There are limitations to our Mendelian random-

ization approach, and our results could be explained by

bias or confounding. For example, we used combinations

of genome-wide genetic variants to proxy BMI and height,

but these variants may not be specific for BMI or height

and may influence prostate cancer through biological

pathways other than through the phenotypes that they are

acting as proxies for (genetic confounding or pleiotropy).

This is plausible since even single SNPs can exert pleio-

tropic effects across a range of different variables [45]; for

example, many BMI-associated SNPs are present at quite

low levels of significance in a GWAS of c-reactive protein

(CRP) [34]. However, we found similar results when we

used two independent instruments for each phenotype,

suggesting these results may not be due pleiotropy of a

single SNP. We assumed a similar qualitative effect of the

SNPs in our sample as the GIANT consortium, which is

highly plausible but may not be true. We found little evi-

dence that the genetic risk scores were associated with

baseline covariates in the ProtecT study, and this is con-

sistent with findings from the broader literature [46–49].

A reduced risk of prostate cancer associated with BMI is

biologically plausible, with proposed mechanisms includ-

ing the increase in estrogens (aromatase inhibitors) sec-

ondary to adiposity. However, we cannot rule out detection

bias [50] arising from delayed diagnosis and more

advanced stage at diagnosis in obese men; this may arise

due to lower accuracy of digital rectal examination in

obese men or lower PSA values caused by obesity-related

hemodilution [8, 9].

In conclusion, our genetic data provide some evidence

(albeit weak) that an elevated BMI may protect against

prostate cancer risk or reduce the likelihood of it being

detected (in particular, low-grade cancer), but may increase

the likelihood of death in men with low-grade prostate

cancer. These observations support epidemiological find-

ings that obesity protects against a diagnosis of localized

prostate cancer but increases prostate cancer mortality [8].

Previously observed positive associations of height with

prostate cancer risk may reflect the environmental deter-

minants of height. In contrast, observed positive associa-

tions of height with prostate cancer mortality may reflect

the genetic determinants of height or of height determining

phenotypes (e.g., IGF [39]). The findings for mortality that

were only observed among men with low-grade disease are

novel, and potentially clinically important, but do require

replication.
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