662 research outputs found

    The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare

    Full text link
    The newly developed X-ray visibility forward fitting technique is applied to Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb flare to investigate the energy and height dependence on sizes, shapes, and position of hard X-ray chromospheric footpoint sources. This provides information about the electron transport and chromospheric density structure. The spatial distribution of two footpoint X-ray sources is analyzed using PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at nonthermal energies from 20\sim 20 to 200\sim 200 keV. We report, for the first time, the vertical extents and widths of hard X-ray chromospheric sources measured as a function of energy for a limb event. Our observations suggest that both the vertical and horizontal sizes of footpoints are decreasing with energy. Higher energy emission originates progressively deeper in the chromosphere consistent with downward flare accelerated streaming electrons. The ellipticity of the footpoints grows with energy from 0.5\sim 0.5 at 20 \sim 20 keV to 0.9\sim 0.9 at 150\sim 150 keV. The positions of X-ray emission are in agreement with an exponential density profile of scale height 150\sim 150~km. The characteristic size of the hard X-ray footpoint source along the limb is decreasing with energy suggesting a converging magnetic field in the footpoint. The vertical sizes of X-ray sources are inconsistent with simple collisional transport in a single density scale height but can be explained using a multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap

    Asymmetric Field Profile in Bose Glass Phase of Irradiated YBa2Cu3O7-d: Loss of Interlayer Coherence around 1/3 of Matching Field

    Full text link
    Magneto-optical imaging in YBa2Cu3O7-d with tilted columnar defects (CD's) shows an asymmetric critical-state field profile. The observed hysteretic shift of the profile ridge (trough) from the center of the sample is explained by in-plane magnetization originated from vortex alignment along CD's. The extracted ratio of the in-plane to out-of-plane magnetization component has a maximum at 1/5 of matching field (BΦB_\Phi) and disappears above BΦ/3B_\Phi/3, suggesting a reduction of interlayer coherence well bellow BΦB_\Phi in the Bose glass phase. Implications are discussed in comparison with the vortex liquid recoupling observed in irradiated Bi2Sr2CaCu2O8+y.Comment: Revtex, 4 pages, 5 figures, also see a movie at (http://www.ap6.t.u-tokyo.ac.jp/kitaka/Research/d-line/index_e.htm). This manuscript will appear in Phys. Rev. Let

    The spectral difference between solar flare HXR coronal and footpoint sources due to wave-particle interactions

    Full text link
    Investigate the spatial and spectral evolution of hard X-ray (HXR) emission from flare accelerated electron beams subject to collisional transport and wave-particle interactions in the solar atmosphere. We numerically follow the propagation of a power-law of accelerated electrons in 1D space and time with the response of the background plasma in the form of Langmuir waves using the quasilinear approximation.}{We find that the addition of wave-particle interactions to collisional transport for a transient initially injected electron beam flattens the spectrum of the footpoint source. The coronal source is unchanged and so the difference in the spectral indices between the coronal and footpoint sources is \Delta \gamma > 2, which is larger than expected from purely collisional transport. A steady-state beam shows little difference between the two cases, as has been previously found, as a transiently injected electron beam is required to produce significant wave growth, especially at higher velocities. With this transiently injected beam the wave-particle interactions dominate in the corona whereas the collisional losses dominate in the chromosphere. The shape of the spectrum is different with increasing electron beam density in the wave-particle interaction case whereas with purely collisional transport only the normalisation is changed. We also find that the starting height of the source electron beam above the photosphere affects the spectral index of the footpoint when Langmuir wave growth is included. This may account for the differing spectral indices found between double footpoints if asymmetrical injection has occurred in the flaring loop.Comment: 10 pages, 10 FIgures, accepted for publication in A&

    Composite-pulse magnetometry with a solid-state quantum sensor

    Get PDF
    The sensitivity of quantum magnetometers is challenged by control errors and, especially in the solid-state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static (DC) or aperiodic fields. Here we experimentally demonstrate that continuous driving of the sensor spin by a composite pulse known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating both driving power imperfections and decoherence. A suitable choice of RE parameters compensates for different scenarios of noise strength and origin. The method can be applied to nanoscale sensing in variable environments or to realize noise spectroscopy. In a room-temperature implementation based on a single electronic spin in diamond, composite-pulse magnetometry provides a tunable trade-off between sensitivities in the microT/sqrt(Hz) range, comparable to those obtained with Ramsey spectroscopy, and coherence times approaching T1

    Optical Spectropolarimetry of SN 2002ap: High Velocity Asymmetric Explosion

    Full text link
    We present spectropolarimetry of the Type Ic supernova SN 2002ap and give a preliminary analysis: the data were taken at two epochs, close to and one month later than the visual maximum (2002 February 8). In addition we present June 9 spectropolarimetry without analysis. The data show the development of linear polarization. Distinct polarization profiles were seen only in the O I \lambda 7773 multiplet/Ca II IR triplet absorption trough at maximum light and in the Ca II IR triplet absorption trough a month later, with the latter showing a peak polarization as high as ~2 %. The intrinsic polarization shows three clear position angles: 80 degs for the February continuum, 120 degs for the February line feature, and 150 degs for the March data. We conclude that there are multiple asymmetric components in the ejecta. We suggest that the supernova has a bulk asymmetry with an axial ratio projected on the sky that is different from 1 by of order 10 %. Furthermore, we suggest very speculatively that a high velocity ejecta component moving faster than ~0.115c (e.g., a jet) contributes to polarization in the February epoch.Comment: 7 pages, 3 figures, accepted for publication in the Astrophysical Journal (Letters

    Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    Get PDF
    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high- resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.Laura Antonia Balmaceda: [email protected]; Judith Palacios Hernández: [email protected]; Iballa Cabello García: [email protected]; Vicente Domingo Codoñer: [email protected]

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot

    Full text link
    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to (i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and (ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that (i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and (ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behaviour with the absorption being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on Helio-and-Astroseismolog

    An Intriguing Solar Microflare Observed with RHESSI, Hinode and TRACE

    Full text link
    Investigate particle acceleration and heating in a solar microflare. In a microflare with non-thermal emission to remarkably high energies (>50>50 keV), we investigate the hard X-rays with RHESSI imaging and spectroscopy and the resulting thermal emission seen in soft X-rays with Hinode/XRT and in EUV with TRACE. The non-thermal footpoints observed with RHESSI spatially and temporally match bright footpoint emission in soft X-rays and EUV. There is the possibility that the non-thermal spectrum extends down to 4 keV. The hard X-ray burst clearly does not follow the expected Neupert effect, with the time integrated hard X-rays not matching the soft X-ray time profile. So although this is a simple microflare with good X-ray observation coverage it does not fit the standard flare model.Comment: 4 pages, 5 figures, accepted by A&

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres
    corecore