662 research outputs found
The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare
The newly developed X-ray visibility forward fitting technique is applied to
Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb
flare to investigate the energy and height dependence on sizes, shapes, and
position of hard X-ray chromospheric footpoint sources. This provides
information about the electron transport and chromospheric density structure.
The spatial distribution of two footpoint X-ray sources is analyzed using
PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at
nonthermal energies from to keV. We report, for the first
time, the vertical extents and widths of hard X-ray chromospheric sources
measured as a function of energy for a limb event. Our observations suggest
that both the vertical and horizontal sizes of footpoints are decreasing with
energy. Higher energy emission originates progressively deeper in the
chromosphere consistent with downward flare accelerated streaming electrons.
The ellipticity of the footpoints grows with energy from at keV to at keV. The positions of X-ray emission are in
agreement with an exponential density profile of scale height ~km.
The characteristic size of the hard X-ray footpoint source along the limb is
decreasing with energy suggesting a converging magnetic field in the footpoint.
The vertical sizes of X-ray sources are inconsistent with simple collisional
transport in a single density scale height but can be explained using a
multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap
Asymmetric Field Profile in Bose Glass Phase of Irradiated YBa2Cu3O7-d: Loss of Interlayer Coherence around 1/3 of Matching Field
Magneto-optical imaging in YBa2Cu3O7-d with tilted columnar defects (CD's)
shows an asymmetric critical-state field profile. The observed hysteretic shift
of the profile ridge (trough) from the center of the sample is explained by
in-plane magnetization originated from vortex alignment along CD's. The
extracted ratio of the in-plane to out-of-plane magnetization component has a
maximum at 1/5 of matching field () and disappears above ,
suggesting a reduction of interlayer coherence well bellow in the Bose
glass phase. Implications are discussed in comparison with the vortex liquid
recoupling observed in irradiated Bi2Sr2CaCu2O8+y.Comment: Revtex, 4 pages, 5 figures, also see a movie at
(http://www.ap6.t.u-tokyo.ac.jp/kitaka/Research/d-line/index_e.htm). This
manuscript will appear in Phys. Rev. Let
The spectral difference between solar flare HXR coronal and footpoint sources due to wave-particle interactions
Investigate the spatial and spectral evolution of hard X-ray (HXR) emission
from flare accelerated electron beams subject to collisional transport and
wave-particle interactions in the solar atmosphere. We numerically follow the
propagation of a power-law of accelerated electrons in 1D space and time with
the response of the background plasma in the form of Langmuir waves using the
quasilinear approximation.}{We find that the addition of wave-particle
interactions to collisional transport for a transient initially injected
electron beam flattens the spectrum of the footpoint source. The coronal source
is unchanged and so the difference in the spectral indices between the coronal
and footpoint sources is \Delta \gamma > 2, which is larger than expected from
purely collisional transport. A steady-state beam shows little difference
between the two cases, as has been previously found, as a transiently injected
electron beam is required to produce significant wave growth, especially at
higher velocities. With this transiently injected beam the wave-particle
interactions dominate in the corona whereas the collisional losses dominate in
the chromosphere. The shape of the spectrum is different with increasing
electron beam density in the wave-particle interaction case whereas with purely
collisional transport only the normalisation is changed. We also find that the
starting height of the source electron beam above the photosphere affects the
spectral index of the footpoint when Langmuir wave growth is included. This may
account for the differing spectral indices found between double footpoints if
asymmetrical injection has occurred in the flaring loop.Comment: 10 pages, 10 FIgures, accepted for publication in A&
Composite-pulse magnetometry with a solid-state quantum sensor
The sensitivity of quantum magnetometers is challenged by control errors and,
especially in the solid-state, by their short coherence times. Refocusing
techniques can overcome these limitations and improve the sensitivity to
periodic fields, but they come at the cost of reduced bandwidth and cannot be
applied to sense static (DC) or aperiodic fields. Here we experimentally
demonstrate that continuous driving of the sensor spin by a composite pulse
known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating
both driving power imperfections and decoherence. A suitable choice of RE
parameters compensates for different scenarios of noise strength and origin.
The method can be applied to nanoscale sensing in variable environments or to
realize noise spectroscopy. In a room-temperature implementation based on a
single electronic spin in diamond, composite-pulse magnetometry provides a
tunable trade-off between sensitivities in the microT/sqrt(Hz) range,
comparable to those obtained with Ramsey spectroscopy, and coherence times
approaching T1
Optical Spectropolarimetry of SN 2002ap: High Velocity Asymmetric Explosion
We present spectropolarimetry of the Type Ic supernova SN 2002ap and give a
preliminary analysis: the data were taken at two epochs, close to and one month
later than the visual maximum (2002 February 8). In addition we present June 9
spectropolarimetry without analysis. The data show the development of linear
polarization. Distinct polarization profiles were seen only in the O I \lambda
7773 multiplet/Ca II IR triplet absorption trough at maximum light and in the
Ca II IR triplet absorption trough a month later, with the latter showing a
peak polarization as high as ~2 %. The intrinsic polarization shows three clear
position angles: 80 degs for the February continuum, 120 degs for the February
line feature, and 150 degs for the March data. We conclude that there are
multiple asymmetric components in the ejecta. We suggest that the supernova has
a bulk asymmetry with an axial ratio projected on the sky that is different
from 1 by of order 10 %. Furthermore, we suggest very speculatively that a high
velocity ejecta component moving faster than ~0.115c (e.g., a jet) contributes
to polarization in the February epoch.Comment: 7 pages, 3 figures, accepted for publication in the Astrophysical
Journal (Letters
Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma
Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high- resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.Laura Antonia Balmaceda: [email protected]; Judith Palacios Hernández: [email protected]; Iballa Cabello García: [email protected]; Vicente Domingo Codoñer: [email protected]
Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice
<div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div
Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot
The distribution of acoustic power over sunspots shows an enhanced absorption
near the umbra--penumbra boundary. Earlier studies revealed that the region of
enhanced absorption coincides with the region of strongest transverse potential
field. The aim of this paper is to (i) utilize the high-resolution vector
magnetograms derived using Hinode SOT/SP observations and study the
relationship between the vector magnetic field and power absorption and (ii)
study the variation of power absorption in sunspot penumbrae due to the
presence of spine-like radial structures. It is found that (i) both potential
and observed transverse fields peak at a similar radial distance from the
center of the sunspot, and (ii) the magnitude of the transverse field, derived
from Hinode observations, is much larger than the potential transverse field
derived from SOHO/MDI longitudinal field observations. In the penumbra, the
radial structures called spines (intra-spines) have stronger (weaker) field
strength and are more vertical (horizontal). The absorption of acoustic power
in the spine and intra-spine shows different behaviour with the absorption
being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on
Helio-and-Astroseismolog
An Intriguing Solar Microflare Observed with RHESSI, Hinode and TRACE
Investigate particle acceleration and heating in a solar microflare. In a
microflare with non-thermal emission to remarkably high energies ( keV),
we investigate the hard X-rays with RHESSI imaging and spectroscopy and the
resulting thermal emission seen in soft X-rays with Hinode/XRT and in EUV with
TRACE. The non-thermal footpoints observed with RHESSI spatially and temporally
match bright footpoint emission in soft X-rays and EUV. There is the
possibility that the non-thermal spectrum extends down to 4 keV. The hard X-ray
burst clearly does not follow the expected Neupert effect, with the time
integrated hard X-rays not matching the soft X-ray time profile. So although
this is a simple microflare with good X-ray observation coverage it does not
fit the standard flare model.Comment: 4 pages, 5 figures, accepted by A&
Survey on solar X-ray flares and associated coherent radio emissions
The radio emission during 201 X-ray selected solar flares was surveyed from
100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection
includes all RHESSI flares larger than C5.0 jointly observed from launch until
June 30, 2003. Detailed association rates of radio emission during X-ray flares
are reported. In the decimeter wavelength range, type III bursts and the
genuinely decimetric emissions (pulsations, continua, and narrowband spikes)
were found equally frequently. Both occur predominantly in the peak phase of
hard X-ray (HXR) emission, but are less in tune with HXRs than the
high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron
radiation. In 10% of the HXR flares, an intense radiation of the above genuine
decimetric types followed in the decay phase or later. Classic meter-wave type
III bursts are associated in 33% of all HXR flares, but only in 4% they are the
exclusive radio emission. Noise storms were the only radio emission in 5% of
the HXR flares, some of them with extended duration. Despite the spatial
association (same active region), the noise storm variations are found to be
only loosely correlated in time with the X-ray flux. In a surprising 17% of the
HXR flares, no coherent radio emission was found in the extremely broad band
surveyed. The association but loose correlation between HXR and coherent radio
emission is interpreted by multiple reconnection sites connected by common
field lines.Comment: Solar Physics, in pres
- …