82 research outputs found

    Risdiplam in Patients Previously Treated with Other Therapies for Spinal Muscular Atrophy: An Interim Analysis from the JEWELFISH Study

    Get PDF
    INTRODUCTION: Risdiplam is a survival of motor neuron 2 (SMN2) splicing modifier for the treatment of patients with spinal muscular atrophy (SMA). The JEWELFISH study (NCT03032172) was designed to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of risdiplam in previously treated pediatric and adult patients with types 1-3 SMA. Here, an analysis was performed after all patients had received at least 1 year of treatment with risdiplam. METHODS: Patients with a confirmed diagnosis of 5q-autosomal recessive SMA between the ages of 6 months and 60 years were eligible for enrollment. Patients were previously enrolled in the MOONFISH study (NCT02240355) with splicing modifier RG7800 or treated with olesoxime, nusinersen, or onasemnogene abeparvovec. The primary objectives of the JEWELFISH study were to evaluate the safety and tolerability of risdiplam and investigate the PK after 2 years of treatment. RESULTS: A total of 174 patients enrolled: MOONFISH study (n = 13), olesoxime (n = 71 patients), nusinersen (n = 76), onasemnogene abeparvovec (n = 14). Most patients (78%) had three SMN2 copies. The median age and weight of patients at enrollment was 14.0 years (1-60 years) and 39.1 kg (9.2-108.9 kg), respectively. About 63% of patients aged 2-60 years had a baseline total score of less than 10 on the Hammersmith Functional Motor Scale-Expanded and 83% had scoliosis. The most common adverse event (AE) was upper respiratory tract infection and pyrexia (30 patients each; 17%). Pneumonia (four patients; 2%) was the most frequently reported serious AE (SAE). The rates of AEs and SAEs per 100 patient-years were lower in the second 6-month period compared with the first. An increase in SMN protein was observed in blood after risdiplam treatment and was comparable across all ages and body weight quartiles. CONCLUSIONS: The safety and PD of risdiplam in patients who were previously treated were consistent with those of treatment-naïve patients

    P.025 Efficacy and safety results of the avalglucosidase alfa phase 3 COMET trial in participants with late-onset Pompe disease (LOPD)

    Get PDF
    Background: Phase 3 COMET trial (NCT02782741) compares avalglucosidase alfa (n=51) with alglucosidase alfa (n=49) in treatment-naïve LOPD. Methods: Primary objective: determine avalglucosidase alfa effect on respiratory muscle function. Secondary/other objectives include: avalglucosidase alfa effect on functional endurance, inspiratory/expiratory muscle strength, lower/upper extremity muscle strength, motor function, health-related quality of life, safety. Results: At Week 49, change (LSmean±SE) from baseline in upright forced vital capacity %predicted was greater with avalglucosidase alfa (2.89%±0.88%) versus alglucosidase alfa (0.46%±0.93%)(absolute difference+2.43%). The primary objective, achieving statistical non-inferiority (p=0.0074), was met. Superiority testing was borderline significant (p=0.0626). Week 49 change from baseline in 6-minute walk test was 30.01-meters greater for avalglucosidase alfa (32.21±9.93m) versus alglucosidase alfa (2.19±10.40m). Positive results for avalglucosidase alfa were seen for all secondary/other efficacy endpoints. Treatment-emergent adverse events (AEs) occurred in 86.3% of avalglucosidase alfa-treated and 91.8% of alglucosidase alfa-treated participants. Five participants withdrew, 4 for AEs, all on alglucosidase alfa. Serious AEs occurred in 8 avalglucosidase alfa-treated and 12 alglucosidase alfa-treated participants. IgG antidrug antibody responses were similar in both. High titers and neutralizing antibodies were more common for alglucosidase alfa. Conclusions: Results demonstrate improvements in clinically meaningful outcome measures and a more favorable safety profile with avalglucosidase alfa versus alglucosidase alfa. Funding: Sanofi Genzym

    VAV1 and BAFF, via NFκB pathway, are genetic risk factors for myasthenia gravis

    Get PDF
    Objective To identify novel genetic loci that predispose to early‐onset myasthenia gravis (EOMG) applying a two‐stage association study, exploration, and replication strategy. Methods Thirty‐four loci and one confirmation loci, human leukocyte antigen (HLA)‐DRA, were selected as candidate genes by team members of groups involved in different research aspects of MG. In the exploration step, these candidate genes were genotyped in 384 EOMG and 384 matched controls and significant difference in allele frequency were found in eight genes. In the replication step, eight candidate genes and one confirmation loci were genotyped in 1177 EOMG patients and 814 controls, from nine European centres. Results Allele frequency differences were found in four novel loci: CD86, AKAP12, VAV1, B‐cell activating factor (BAFF), and tumor necrosis factor‐alpha (TNF‐α), and these differences were consistent in all nine cohorts. Haplotype trend test supported the differences in allele frequencies between cases and controls. In addition, allele frequency difference in female versus male patients at HLA‐DRA and TNF‐α loci were observed. Interpretation The genetic associations to EOMG outside the HLA complex are novel and of interest as VAV1 is a key signal transducer essential for T‐ and B‐cell activation, and BAFF is a cytokine that plays important roles in the proliferation and differentiation of B‐cells. Moreover, we noted striking epistasis between the predisposing VAV1 and BAFF haplotypes; they conferred a greater risk in combination than alone. These, and CD86, share the same signaling pathway, namely nuclear factor‐kappaB (NFκB), thus implicating dysregulation of proinflammatory signaling in predisposition to EOMG

    Eight years after an international workshop on myotonic dystrophy patient registries: case study of a global collaboration for a rare disease.

    Get PDF
    Background Myotonic Dystrophy is the most common form of muscular dystrophy in adults, affecting an estimated 10 per 100,000 people. It is a multisystemic disorder affecting multiple generations with increasing severity. There are currently no licenced therapies to reverse, slow down or cure its symptoms. In 2009 TREAT-NMD (a global alliance with the mission of improving trial readiness for neuromuscular diseases) and the Marigold Foundation held a workshop of key opinion leaders to agree a minimal dataset for patient registries in myotonic dystrophy. Eight years after this workshop, we surveyed 22 registries collecting information on myotonic dystrophy patients to assess the proliferation and utility the dataset agreed in 2009. These registries represent over 10,000 myotonic dystrophy patients worldwide (Europe, North America, Asia and Oceania). Results The registries use a variety of data collection methods (e.g. online patient surveys or clinician led) and have a variety of budgets (from being run by volunteers to annual budgets over €200,000). All registries collect at least some of the originally agreed data items, and a number of additional items have been suggested in particular items on cognitive impact. Conclusions The community should consider how to maximise this collective resource in future therapeutic programmes

    Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness

    Get PDF
    Several hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology. Exome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions. We identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation. Using our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes

    The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.

    Get PDF
    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations)

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne Muscular Dystrophy mutations

    Get PDF
    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations)
    corecore