14 research outputs found

    Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada

    Get PDF
    Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO2) and methane (CH4) emissions. We studied changes in CO2, CH4 and nitrous oxide (N2O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100 years. The soils in our study acted as sources of CO2 and N2O and sinks for CH4. The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH4, and the N2O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Forest fires in Canadian permafrost region : the combined effects of fire and permafrost dynamics on soil organic matter quality

    Get PDF
    Wildfires burn approximately 1% of boreal forest yearly, being one of the most significant factors affecting soil organic matter (SOM) pools. Boreal forests are largely situated in the permafrost zone, which contains half of global soil carbon (C). Wildfires advance thawing of permafrost by burning the insulating organic layer and decreasing surface albedo, thus increasing soil temperatures. Fires also affect SOM quality through chemical and physical changes, such as the formation of resistant C compounds. The long-term post-fire effects on SOM quality, degradability and isotopic composition are not well known in permafrost forests. We studied the effect of forest fires on the proportional sizes of SOM pools with chemical fractionation (extracting with water, ethanol and acid) of soil samples (5, 30 and 50cm depths) collected from a fire chronosequence in the upland mineral soils of the Canadian permafrost zone. We also determined the C-13 and N-15 isotopic composition of soil after fire. In the topsoil horizon (5cm) recent fire areas contained a smaller fraction of labile SOM and were slightly more enriched with N-15 and C-13 than older fire areas. The SOM fraction ratios reverted towards pre-fire status with succession. Changes in SOM were less apparent deeper in the soil. Best predictors for the size of recalcitrant SOM fraction were active layer depth, vegetation biomass and soil C/N ratio, whereas microbial biomass was best predicted by the size of the recalcitrant SOM fraction. Results indicated that SOM in upland mineral soils at the permafrost surface could be mainly recalcitrant and its decomposition not particularly sensitive to changes resulting from fire.Peer reviewe

    Nitrogen balance along a northern boreal forest fire chronosequence

    Get PDF
    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha(-1) of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha(-1), with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha(-1) which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha(-1) yr(-1) over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (<0.01 kg ha(-1) yr(-1)) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.Peer reviewe

    Current Wildland Fire Patterns and Challenges in Europe : A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009-2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action "Fire and the Earth System: Science & Society" funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.Peer reviewe

    Effect of biochar amendment on the properties of growing media and growth of containerized Norway spruce, Scots pine, and silver birch seedlings

    No full text
    Common practices and several studies have demonstrated the positive effect of biochar amendment on climate change mitigation, soil properties, and plant growth. We performed a greenhouse experiment to assess the potential of wood biochar to improve the properties of the growing media and the growth of seedlings in boreal tree species. We added willow biochar (0%, 5%, 10%, and 20%) to raw peat and measured the growth of Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and silver birch (Betula pendula Roth) seedlings. In addition, the co-effect of biochar amendment with 0%, 50%, and 100% fertilization was estimated. We found that using up to 10% of biochar did not reduce the water retention capacity of the growing media significantly. Moreover, biochar amendment significantly increased carbon, nitrogen, potassium, and phosphorus concentrations and had a significant liming effect on the growing media. The biochar amendment increased the aboveground growth of spruce seedlings and root biomass, as well as the root collar diameter, of birch seedlings. Biochar amendment did not affect the quality of seedlings, estimated by the Dickson’s quality index, for spruce and pine, while the quality of birch increased. Based on our results, biochar has potential in forest seedling production.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests

    No full text
    In boreal forest ecosystems fire, fungi and bacteria, and their interactions, have a pronounced effect on soil carbon dynamics. In this study we measured enzymatic activities, litter decomposition rates, carbon stocks and fungal and microbial biomasses in a boreal subarctic coniferous forest on a four age classes of non-stand replacing fire chronosequence (2, 42, 60 and 152 years after the fire). The results show that microbial activity recovered slowly after fire and the decomposition of new litter was affected by the disturbance. The percent mass loss of Scots pine litter increased with time from the last fire. Slow litter decomposition during the first post-fire years accelerates soil organic matter accumulation that is essential for the recovery of soil biological activities. Fire reduced the enzymatic activity across all the enzyme types measured. Carbon-degrading, chitin-degrading and phosphorus-dissolving enzymes showed different responses with the time elapsed since the fire disturbance. Microbial and enzymatic activity took decades before recovering to the levels observed in old forest stands. Our study demonstrates that slower post-fire litter decomposition has a pronounced impact on the recovery of soil organic matter following forest fires in northern boreal coniferous forests.201

    Clinical and neurophysiological characterization of myoclonus in complex regional pain syndrome

    No full text
    The origin Of myoclonus ill patients with complex regional pain syndrome (CRPS) is unknown. Eight patients with CRPS related myoclonus were clinically evaluated and Studied with intermuscular and corticomuscular coherence analysis. Jerks were present at test, aggravated during action and were frequently associated with tremulousness or dystonia. Electromyography demonstrated a burst duration ranging from 25 to 240 ins with burst frequencies varying fro
    corecore