7 research outputs found

    Changes in acetyl-CoA mediate Sik3-induced maturation of chondrocytes in endochondral bone formation

    Get PDF
    The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites

    Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3.

    Get PDF
    植物由来成分であるプテロシンBはSIK3を阻害し変形性関節症の治療薬開発のリード化合物となる. 京都大学プレスリリース. 2016-03-31.Yahara, Y., Takemori, H., Okada, M. et al. Correction: Corrigendum: Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3. Nat Commun 7, 12117 (2016).Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic

    アセチルCoAは内軟骨性骨化におけるSik3誘導性の軟骨細胞分化を制御する

    No full text
    京都大学0048新制・課程博士博士(医学)甲第22145号医博第4536号新制||医||1039(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 戸口田 淳也, 教授 安達 泰治, 教授 松田 秀一学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA
    corecore