97 research outputs found

    A phase II trial of bryostatin-1 administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma

    Get PDF
    Bryostatin-1 is a macrocyclic lactone whose main mechanism of action is protein kinase C modulation. We investigated its activity as a weekly 24-h infusion in recurrent ovarian carcinoma. In all, 17 patients were recruited and 11 had chemotherapy-resistant disease as defined by disease progression within 4 months of last cytotoxic therapy. All were evaluable for toxicity and 14 for response. There were no disease responses and the main toxicity was myalgia

    Marine Antitumor Drugs: Status, Shortfalls and Strategies

    Get PDF
    Cancer is considered as one of the deadliest diseases in the medical field. Apart from the preventive therapies, it is important to find a curative measure which holds no loopholes and acts accurately and precisely to curb cancer. Over the past few decades, there have been advances in this field and there are many antitumor compounds available on the market, which are of natural as well as synthetic origin. Marine chemotherapy is well recognized nowadays and profound development has been achieved by researchers to deal with different molecular pathways of tumors. However, the marine environment has been less explored for the production of safe and novel antitumor compounds. The reason is a number of shortfalls in this field. Though ample reviews cover the importance and applications of various anticancerous compounds from marine natural products, in the present review, we have tried to bring the current status of antitumor research based on marine inhibitors of cancer signaling pathways. In addition, focus has been placed on the shortfalls and probable strategies in the arena of marine antitumor drug discovery

    Kinase Inhibitors from Marine Sponges

    Get PDF
    Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included

    G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer

    Get PDF
    Rigorous quality control steps, termed checkpoints, tightly regulate progression through the cell cycle. DNA-damaging chemotherapy and radiation activate functional cellular checkpoints. These checkpoints can facilitate DNA repair and promote cell death in unrepaired cells. There are at least three DNA damage checkpoints – at G1/S, S, and G2/M – as well as a mitotic spindle checkpoint. Most cancer cells harbour mutations in tumour suppressors and/or oncogenes, which impair certain cell checkpoints. Inhibiting the remaining cell checkpoints – particularly after exposure of cancer cells to chemotherapy and/or radiation – allows cell death, a strategy now being employed in cancer therapeutics. With our increasing knowledge of cell cycle regulation, many compounds have been developed to inhibit specific checkpoint components, particularly at the G2/M transition. One such target is checkpoint kinase-1 (Chk1). We review here the molecular framework of the cell cycle, the rationale for targeting Chk1, the preclinical concepts related to the development of Chk1 inhibitors, and the efficacy and safety results from Chk1 inhibitors now in phase I/II trials

    Bryostatin-1

    No full text
    corecore