91 research outputs found

    An example of a method to wirelessly transfer measurement data from cows in a free stall barn

    Get PDF
    Here we describe a wireless data measurement and transfer system that operates within a free stall barn. We report also the reliability of the system. This system was designed and built in Very Intelligent Cow Barn project in 2006-2007

    Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism : Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice

    Get PDF
    Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 ?g/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.Peer reviewe

    Dioxin Induces Genomic Instability in Mouse Embryonic Fibroblasts

    Get PDF
    Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI), i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mouse embryonic fibroblasts (C3H10T1/2) were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN) and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days). For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay), was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response

    Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A

    Get PDF
    INTRODUCTION: This study was designed to determine if and how a non-toxic, naturally occurring bioflavonoid, galangin, affects proliferation of human mammary tumor cells. Our previous studies demonstrated that, in other cell types, galangin is a potent inhibitor of the aryl hydrocarbon receptor (AhR), an environmental carcinogen-responsive transcription factor implicated in mammary tumor initiation and growth control. Because some current breast cancer therapeutics are ineffective in estrogen receptor (ER) negative tumors and since the AhR may be involved in breast cancer proliferation, the effects of galangin on the proliferation of an ER(-), AhR(high )line, Hs578T, were studied. METHODS: AhR expression and function in the presence or absence of galangin, a second AhR inhibitor, α-naphthoflavone (α-NF), an AhR agonist, indole-3-carbinol, and a transfected AhR repressor-encoding plasmid (FhAhRR) were studied in Hs578T cells by western blotting for nuclear (for instance, constitutively activated) AhR and by transfection of an AhR-driven reporter construct, pGudLuc. The effects of these agents on cell proliferation were studied by (3)H-thymidine incorporation and by flow cytometry. The effects on cyclins implicated in mammary tumorigenesis were evaluated by western blotting. RESULTS: Hs578T cells were shown to express high levels of constitutively active AhR. Constitutive and environmental chemical-induced AhR activity was profoundly suppressed by galangin as was cell proliferation. However, the failure of α-NF or FhAhRR transfection to block proliferation indicated that galangin-mediated AhR inhibition was either insufficient or unrelated to its ability to significantly block cell proliferation at therapeutically relevant doses (IC(50 )= 11 ΌM). Galangin inhibited transition of cells from the G(0)/G(1 )to the S phases of cell growth, likely through the nearly total elimination of cyclin D3. Expression of cyclins A and E was also suppressed. CONCLUSION: Galangin is a strong inhibitor of Hs578T cell proliferation that likely mediates this effect through a relatively unique mechanism, suppression of cyclin D3, and not through the AhR. The results suggest that this non-toxic bioflavonoid may be useful as a chemotherapeutic, particularly in combination with agents that target other components of the tumor cell cycle and in situations where estrogen receptor-specific therapeutics are ineffective

    Review and perspective on sleep-disordered breathing research and translation to clinics

    Get PDF
    Sleep-disordered breathing, ranging from habitual snoring to severe obstructive sleep apnea, is a prevalent public health issue. Despite rising interest in sleep and awareness of sleep disorders, sleep research and diagnostic practices still rely on outdated metrics and laborious methods reducing the diagnostic capacity and preventing timely diagnosis and treatment. Consequently, a significant portion of individuals affected by sleep-disordered breathing remain undiagnosed or are misdiagnosed. Taking advantage of state-of-the-art scientific, technological, and computational advances could be an effective way to optimize the diagnostic and treatment pathways. We discuss state-of-the-art multidisciplinary research, review the shortcomings in the current practices of SDB diagnosis and management in adult populations, and provide possible future directions. We critically review the opportunities for modern data analysis methods and machine learning to combine multimodal information, provide a perspective on the pitfalls of big data analysis, and discuss approaches for developing analysis strategies that overcome current limitations. We argue that large-scale and multidisciplinary collaborative efforts based on clinical, scientific, and technical knowledge and rigorous clinical validation and implementation of the outcomes in practice are needed to move the research of sleep-disordered breathing forward, thus increasing the quality of diagnostics and treatment.Peer reviewe
    • 

    corecore