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A B S T R A C T   

Sleep-disordered breathing, ranging from habitual snoring to severe obstructive sleep apnea, is a prevalent public 
health issue. Despite rising interest in sleep and awareness of sleep disorders, sleep research and diagnostic 
practices still rely on outdated metrics and laborious methods reducing the diagnostic capacity and preventing 
timely diagnosis and treatment. Consequently, a significant portion of individuals affected by sleep-disordered 
breathing remain undiagnosed or are misdiagnosed. Taking advantage of state-of-the-art scientific, technolog
ical, and computational advances could be an effective way to optimize the diagnostic and treatment pathways. 

We discuss state-of-the-art multidisciplinary research, review the shortcomings in the current practices of SDB 
diagnosis and management in adult populations, and provide possible future directions. We critically review the 
opportunities for modern data analysis methods and machine learning to combine multimodal information, 
provide a perspective on the pitfalls of big data analysis, and discuss approaches for developing analysis stra
tegies that overcome current limitations. We argue that large-scale and multidisciplinary collaborative efforts 
based on clinical, scientific, and technical knowledge and rigorous clinical validation and implementation of the 
outcomes in practice are needed to move the research of sleep-disordered breathing forward, thus increasing the 
quality of diagnostics and treatment.  
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1. Introduction 

Sleep-disordered breathing (SDB) comprises disorders ranging from 
obstructive sleep apnea (OSA) and central sleep apnea to sleep-related 
hypoventilation disorders and habitual snoring [1]. SDB, and particu
larly OSA have become a global health burden with remarkably high 
prevalence with OSA alone affecting up to a billion individuals globally 
[2,3]. Besides disrupting nocturnal respiration and fragmenting sleep 
[4], SDB predisposes the afflicted individuals to several life-threatening 
conditions such as neurodegenerative diseases, heart failure, stroke, and 
arrhythmias [5–7] and increases the risk for traffic and occupational 
accidents [8]. Overall, untreated or suboptimally treated SDB has been 
associated with direct healthcare costs, decreased productivity, and 
decreased quality of life [3–7,9,10]. While there have been advance
ments in the diagnostic process, for example, the increase of home-based 
recordings and semi-automatised scoring, the main parameters used to 
classify the SDB severity leading to clinical decision-making and treat
ment eligibility, have not significantly evolved in decades [11,12]. 

The current diagnostic practice of SDB mostly relies on complex re
cordings, either in-laboratory polysomnography (PSG) or a home sleep 
apnea test, over a single night despite significant night-to-night vari
ability in SDB severity [13,14]. Overall, the current measurement pro
tocols are suboptimal for long-term monitoring or screening more 
individuals with symptoms of SDB mostly limiting their availability only 
to individuals with a strong clinical suspicion of sleep disorders. This can 
explain why, for example, OSA often remains undiagnosed [2,15–17], 
and why the SDB severity is sometimes misdiagnosed. Moreover, despite 
using complex diagnostic recording setups and possibly spending up to a 
few hours of manual labour analysing the recordings, most information 
in the recordings is completely overlooked. Most notably, the diagnostic 
decision-making and treatment eligibility are based on arbitrary and 
simplistic metrics, such as the apnea-hypopnea index (AHI), shown to be 
poorly correlated to treatment outcomes, daytime symptoms, and 
physiological effects [12]. Moreover, the assessment of sleep quality 
relies on manually segmenting sleep in 30-s epochs instead of consid
ering it as a continuum of different levels of neuronal and physiological 
activity [11,18]. Overall, the diagnostics rely on pioneering work in 
sleep research developed in an era with analogue recordings and limited 
knowledge of sleep disorders [12]. However, with modern medical 
technology and precision medicine, there is substantial motivation to 
fundamentally re-evaluate these diagnostic methods to achieve more 
individualized, patient-centered care. 

With current technology, sleep recording data is digitally stored 
enabling access and analysis in both real-time as well as retrospectively. 
The biosignals comprising a sleep recording, such as electroencepha
lography (EEG), electrocardiogram (ECG), and blood oxygen saturation 
(SpO2), may be analyzed efficiently by various methods to highlight the 
most relevant characteristics and physiological patterns. Moreover, with 
constantly increasing computing power [19], it is possible to dive deeper 
into the combined information content of all recorded signals and to 
study them as an inter-correlating ensemble. The increased computing 
possibilities alongside innovative applications of data analytics and 
machine learning could provide a more detailed and comprehensive 
representation of the sleep recordings, as demonstrated previously in 
multiple studies [20–24]. 

There have been previous, thorough reviews in more detailed sleep 
recording analytics [25–28]. However, these have mostly focused on 
clinical practices and alternate parameters to replace or complement the 
AHI without considering the shortcomings and factors hindering 
research or the discrepancies in the current scoring practice. In this re
view, we will discuss state-of-the-art research focused on novel ap
proaches to SDB assessment in adult populations and its translation to 
clinical care while focusing on overcoming the factors hindering sleep 
research and the possibilities of multi-centre, multi-disciplinary, and 
multi-scorer datasets not dictated by outdated clinical practices. We will 
emphasize possible pathways to broaden the evaluation of SDB severity 

beyond the conventional epoch-by-epoch sleep staging and respiratory 
event counting. We will review modern digital signal analysis methods 
and machine learning techniques as well as the effectiveness of 
combining multimodal information for personalized SDB diagnostics. 
We will further discuss both possible solutions for utilizing the full 
complexity of overnight signals as well as the possibility of using 
simplified measurement and diagnostic setups to achieve accurate SDB 
monitoring. This review is written within the context of awarded major 
European Union Horizon 2020 grant “Sleep Revolution” focused on 
novel approaches to SDB assessment [29]. 

2. Current practices in research and diagnostics 

2.1. Historical overview 

Sleep architecture is currently analyzed by classifying sleep into 
rapid-eye-movement (REM) sleep and three stages of non-rapid-eye- 
movement (NREM) sleep (N1–N3). This classification comes from the 
American Academy of Sleep Medicine (AASM) recommendations [18, 
30,31], derived mostly from the Rechtschaffen & Kales scoring rules 
introduced in 1968 [32]. The most notable evolution has been the 
reduction of the NREM stages from four to three. However, the 
Rechtschaffen & Kales rules were derived mostly from studies conducted 
on healthy individuals making the generalization to sleep-disordered 
populations questionable, and segmenting sleep into 30-s epochs was 
chosen mostly for convenience rather than scientific evidence [32,33]. 
Yet a half-century later, the rules still form the cornerstone of sleep ar
chitecture assessment, both in research and in diagnostic practice. 

Similarly, the quantification of respiratory events by discrete scoring 
rules is the foundation of SDB research and diagnostics. While OSA was 
recognized during the ‘60s with some features even before, the charac
terization of OSA severity by frequency metrics such as the AHI was first 
introduced in the ‘70s [34]. From that moment on, there has been a 
debate on how to count respiratory events, how to define hypopneas, 
and whether hypopneas should even be considered. The first criticism 
towards the AHI was set practically immediately after its establishment, 
focusing on the AHI being too simplistic and not capturing all the 
essential elements to describe the severity of SDB [12]. However, the 
AHI remains the main metric for treatment decisions in OSA and is the 
main parameter used in SDB research. Moreover, OSA severity is still 
conventionally graded by arbitrary 5/15/30 events/hour AHI thresholds 
and the hypopnea definition still sparks controversy with many coex
isting hypopnea scoring rules. Under the surface, the physiological ef
fects and even the length and type of respiratory events remain 
overlooked [35,36]. 

2.2. Research aspects 

The current directions in SDB research aim to connect the measur
able characteristics and patterns of SDB to physiological deficits and 
daytime symptoms which attribute to a lowered quality of life. Simul
taneously, researchers explore links and pathways between SDB and 
different comorbidities. For example, while obesity has a well- 
established connection to the development of SDB, there are multiple 
other pathways to developing SDB [37]. Conversely, a wide body of 
evidence has been achieved, for example, stating that SDB is indepen
dently linked to different cardiovascular, cerebrovascular, and meta
bolic diseases [38–40]. Yet the underlying pathophysiological 
mechanisms contributing to the development of comorbid conditions 
remain unclear, likely due to current SDB metrics failing to fully capture 
the SDB characteristics and physiological effects. Furthermore, there is 
evidence of a bidirectional relationship between SDB and many linked 
comorbidities such as heart failure, stroke, and renal failure, which 
further complicates the assessment of causality [41]. 

The AHI may not be an optimal parameter to assess SDB severity and 
connections to symptoms and comorbidities [12], despite remaining not 
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only the main clinical parameter but also dictating almost all scientific 
publications in the field as the primary outcome parameter. For research 
purposes, the AHI is an important starting point to define the disease 
condition in the study population. However, it fails as an ultimate 
benchmark [12,36,42,43], thus diminishing the value of, for example, 
grouping the patient population conventionally to mild, moderate, or 
severe categories based on AHI thresholds of 5, 15, and 30 events/hour. 
Moreover, there have been slight modifications to the scoring rules over 
the years with different practices coexisting between different clinics, 
hindering the generalizability of the methods [44]. Still, the arbitrarily 
chosen group with AHI <5 events/hour is used as the “healthy” refer
ence group which can cause bias in the results and lower the correlation 
to disease characteristics and outcomes. Similar issues appear in the 
analysis of sleep patterns and architecture which are usually quantified 
with percentages of sleep stages, arousal index, and sleep efficiency. 
These only capture limited parts of the sleep architecture and more 
detailed methods should be used when focusing on analyzing sleep. 

Machine learning and big data applications in sleep research have 
gained widespread interest and have shown outstanding results in 
automatizing PSG scoring [21,24,45,46] and providing the same or even 
more detailed diagnostic yield from simpler, more comfortable, or sur
rogate recordings [20,22,47–51]. Traditionally, methods aiming for 
automatizing PSG scorings relied on pre-defined rules or simple classi
fiers operating on carefully selected PSG signal features. While these 
have arguably assisted in reducing the time spent for scoring, the more 
recent methods have surpassed these relying on supervised learning 
approaches with deep learning and different variations of artificial 
neural networks. Overall, these have often reached the human-level 
accuracy in scoring, comparable to the inter-rater reliability [21,22, 
45,52,53]. Still, clinical trials investigating the generalizability and 
reliability of the methods across individuals and different centres remain 
an essential study direction that could move their adaption to daily 
practice further. Furthermore, the robustness of the methods may be 
further illustrated by providing metrics that also reflect the certainty of 
the scoring as well as moving towards explainable and interpretable 
methods that provide the reasoning behind the decisions. The applica
tion of different realms of machine learning including representation 
learning, active learning, and other unsupervised or semi-supervised 
methods have a high potential and could provide breakthroughs in the 
coming years to fully utilize the potential of all the collected medical and 
overnight data. 

Sleep quality and sleep monitoring have also gained widespread 
interest in the general population with the emergence of various wear
able devices for self-monitoring [22,54,55]. Wearable devices (wear
ables) is an umbrella term for all non-invasive body-worn sensors. 
Smartwatches and activity watches are examples of wearables that 
capture information by relying on measurements such as accelerome
ters, photoplethysmography, and temperature sensors. Nearables on the 
other hand refer to sensors located in close proximity to the body, for 
example, in a mattress. Both wearables and nearables can arguably have 
their downsides due to inaccuracy, excessive monitoring, and placing 
unwarranted trust in devices with limited validation studies. However, 
these technological advancements hold great potential for sleep research 
when utilized properly. If validated in collaboration with sleep scientists 
and medical experts, wearable self-trackers with sufficient reliability can 
enable long-term monitoring of sleep in a home environment and sup
plement the information gained from traditional single-night sleep 
studies, both in diagnostics and in research [56]. 

3. Utilizing the full potential of PSG - pathways between 
physiological effects, symptoms, and comorbidities 

Even though the AHI is the most frequently used parameter in clin
ical work related to SDB, a variety of alternative approaches have 
already been proposed [42,57–60]. In the next paragraphs, we will not 
focus on the ways to replace the AHI but instead enhance and add value 

to the gained information to move towards a more precise and indi
vidualized diagnosis and research. We review the most novel and in
formatic ways to analyze PSG data and focus on the future directions: (1) 
by emphasizing the evaluation of SDB-related physiological effects and 
their characterization; (2) by discussing possibilities for more detailed 
EEG and sleep architecture analysis; (3) by focusing on the novel 
methods and newest research on phenotyping SDB patients based on 
sleep recordings, and; (4) by presenting novel data analytics and ma
chine learning applications in sleep medicine. 

3.1. Physiological effects 

The pathophysiology of SDB is multifactorial with multiple aspects 
remaining unknown [4,61–64]. In OSA, the typical fundamental ab
normality reflects the inability of the upper airway (UA) dilating mus
cles to withstand the negative forces generated within the UA during 
inspiration. Factors that increase this negative pressure or diminish the 
efficacy of dilating muscle contraction upset this balance and promote 
UA obstruction [37]. Narrowing of the UA, which is a typical feature of 
OSA, increases negative pressure during inspiration, thus promoting 
collapse. 

The UA dilator muscles contract in a phasic manner coordinated with 
inspiration. In OSA, a narrowed UA generates greater collapsing forces 
requiring stronger dilating muscle contraction to prevent closure. Fac
tors further limiting dilator muscle efficacy include instability of venti
latory control during sleep, similar to periodic breathing, and UA 
obstruction is most likely when muscle activity is at the lowest point of 
the cycle. Apnea termination is followed by hyperventilation for several 
breaths, after which UA muscle activity decreases, predisposing to 
further obstruction [37]. Pathophysiological factors behind the cyclicity 
of hypo-and hyperventilation have been described as critical closing 
pressure of the upper airway, muscular compensatory activity, ventila
tory loop gain, and arousal threshold [4,65]. Additional factors include 
the apnea threshold, which relates to oscillations in the respiratory drive 
that is critically dependent on carbon dioxide (CO2), and amplified by 
post-apnea hyperventilation, resulting in CO2 reduction and predispo
sition to further apnea [64]. These recurring cycles of hyper- and 
hypoventilation during sleep vary with ventilatory loop gain and a high 
loop gain increases ventilatory instability, predisposing to apnea [64]. 
Arousal at the end of apnea further enhances post-apneic hyperventi
lation, which represents a further apnea-promoting factor. While 
habitual snoring may not lead to apneic events and cyclic alternation of 
hypo- and hyperventilation, it is independently associated with sleep 
fragmentation, excessive daytime sleepiness, and the development of 
comorbidities such as hypertension [66]. 

Intermittent hypoxia and arousals are important stimuli that increase 
sympathetic activation and promote UA reopening [4,64]. However, 
these will result in hemodynamic consequences including cardiac ac
celeration, central and peripheral arterial vasoconstriction, and blood 
pressure surges. Vascular effects include increased inflammation trig
gered by reactive oxygen species, endothelial dysfunction, and increased 
vascular stiffness [68–70]. Jointly, these pathophysiological mecha
nisms have been linked to the development of hypertension and 
atherosclerotic disease in SDB patients. The amount of intermittent 
hypoxia is also related to adverse cardiovascular outcomes [28,72,83, 
84]. 

Techniques to quantify the physiological effects in more detail are 
gaining interest in the sleep community. For example, longer apneas and 
hypopneas lead to increased short-term heart rate variability (HRV) [71] 
and more severe oxygen desaturations [72]. Meanwhile, the severity of 
desaturations is associated with increased risk for cardiovascular mor
tality, daytime sleepiness, and impaired vigilance more strongly than 
the AHI [42,60,67,73–76]. Additionally, severe hypoxemia leads to 
distortions in cardiorespiratory coupling (CRC) [77] which has also been 
illustrated to act as a biomarker for unstable sleep [77,78]. Furthermore, 
characterizing the photoplethysmographic pulse wave signals has 
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revealed promising surrogates for arterial stiffness and sympathetic 
tone, serving as a direct link to the cardiovascular system [79,80] and 
helping to explain the connections behind cardiovascular morbidity and 
mortality [79,81,82]. Finally, there have been several promising 
methods to quantify the arousal threshold [83], upper airway collaps
ibility [58], and ventilatory loop gain [84] based on physiological 
modelling which could provide further insight into the physiological 
effects without the need for invasive studies. Overall, connecting the 
physiological effects and measurable characteristics with underlying 
pathophysiology while translating these to individualized treatment 
approaches remains an essential study direction [85,86]. 

3.2. Sleep architecture and quality 

The analysis of sleep architecture is conventionally based on the 
percentage of sleep stages from the total sleep time as well as counting 
the number of arousals from sleep. However, these approaches may be 
regarded as oversimplifications of an extremely complex phenomenon. 
The sleep scoring practice was devised mostly based on recordings from 
healthy individuals [32,33] and may therefore not accurately reflect 
those with SDB. For example, the presence of sleep disorders and sleep 
deprivation affects spindle and slow-wave characteristics in N2 and N3 
sleep [87–89]. The current parameters aimed to represent sleep fail to 
explain the variations in daytime sleepiness and impaired vigilance in 
sleep-disordered populations [59,74,90–93]. Similarly, only the number 
of arousals is usually considered despite the fact there is a large variation 
in the length and magnitude of arousals [94,95]. 

The scoring of sleep stages suffers from unreliabilities [96–101]. One 
major issue is the scoring of N1 sleep. It has repeatedly been shown that 
scoring of N1 sleep is highly unreliable with large variations existing 
between scorers, between centres, within centres, and within a single 
scorer, with agreement varying from 0.19 to 0.46 [96–99]. N1 can easily 
be mixed with either N2 or wake epochs causing uncertainties in 
detecting sleep/wake transitions but it also affects the total number of 
scored sleep epochs and thereby distorts total sleep time which is an 
important parameter directly affecting other parameters such as AHI, 
oxygen desaturation index, and arousal index. The question remains 
whether there should be two distinct light sleep stages or a single one, 
and how this stage should be scored. However, more studies are war
ranted on optimal scoring methodology to detect abnormal sleep and its 
connection to daytime symptoms. It could be argued that the current 
manual sleep staging practice, possibly with a limited number of stages, 
should be used only as a simple starting point to get a general idea of the 
sleep macrostructure. 

There have been attempts to overcome the limitations of the current 
sleep scoring practice. For example, the cyclic alternating pattern (CAP) 
has been used to describe periodic EEG patterns in NREM sleep [102]. 
The CAP has been successfully used to act as a biomarker for sleep 
instability and can be used to investigate sleep microstructure 
[103–105]. However, CAP still requires manual scoring of the re
cordings and is therefore labour-intensive. There have been attempts to 
better characterize sleep depth without relying on additional manual 
scoring and moving beyond the artificial division of sleep into discrete 
stages [106–108]. For example, the Odds Ratio Product (ORP), assessing 
sleep depth as a continuous variable based on the EEG frequency con
tent, has demonstrated variability across the night as well as within 
sleep stages, has been associated with arousability, and it has been 
shown that ORP-measured sleep quality increases with CPAP treatment 
[108–110]. Moreover, approaches to present sleep stages with a better 
temporal resolution relying on deep learning have been introduced [20, 
23,24]. Similarly, methods to analyze the continuity of sleep without 
relying solely on the number of arousals or sleep-wake transitions have 
also been developed [20,23,111]. 

Finally, the identification of arousals is important for recognizing 
sleep fragmentation but the current arousal scoring is hampered by 
several factors. Most notably, the agreement between scorers is poor for 

arousal scoring with a reported intra-class correlation of 0.54 [112,113]. 
Hypopnea scoring rules may also influence the arousal scoring. As a 
hypopnea must be associated with an arousal if a desaturation is not 
present, it may be tempting to score an arousal that otherwise might not 
fulfil the scoring criteria for the sake of scoring a visible hypopnea. 
Moreover, the information on arousals is mainly used for hypopnea 
scoring and for simply counting the number of arousals; hence, their 
lengths and start and endpoints may be scored ambiguously, as 
demonstrated by the studies on arousal scoring agreement [112]. As the 
accurate identification of arousals could greatly help in assessing sleep 
architecture, microstructure, and fragmentation, the arousal scoring 
rules and definitions may require revision and a paradigm shift. 

Aside from rationalizing the assessment of sleep based on the elec
trophysiological activity of the brain, incorporating the physiological 
phenomenon visible in other biosignals could better represent the 
restorativeness of sleep. While EEG forms the basis for sleep staging and 
scoring of arousals, sleep is a phenomenon that extensively affects the 
body and assessment should not be based on EEG activity alone. A 
possible biomarker for the restorativeness of sleep could be the coher
ence or dissonance between the electrical activity of the brain and the 
physiological effects. For example, HRV differs in OSA patients 
compared to the normal population across all sleep stages [114]. One 
interesting possibility would be the photoplethysmography (PPG) signal 
as its characteristics have been linked to not only cortical activity [115] 
but also the autonomous nervous system and sympathetic activation 
[115,116]. PPG characteristics have also been used to explain, to some 
extent, the impaired vigilance seen in OSA patients [93] and sleep 
fragmentation [117]. PPG is also easy to record with a pulse oximeter, 
which is included in many wearables, and thus validated PPG-based 
methods have great potential for sleep evaluation also in long-term 
monitoring setups. Thus, it could be argued that enhancing the assess
ment of sleep by considering the autonomous nervous system activity 
and other physiological effects could provide benefits in better 
explaining the daytime effects related to OSA and other sleep disorders; 
however, more studies are warranted. 

3.3. Phenotyping and endotyping SDB 

A future direction to improve the assessment of SDB severity involves 
endotyping and phenotyping of patients based on a variety of charac
teristics, such as anatomical, demographical, anthropometrical, and PSG 
data [84,118–122]. Phenotyping delineates patient groups according to 
clinically observable characteristics using a broad variety of parameters, 
usually without assessing a direct link to underlying pathophysiology. 
Endotyping, on the other hand, describes the approach of grouping 
patients that share common pathophysiology and ultimately facilitating 
targeted and individualized treatment based on these characteristics. 

Phenotyping of SDB is often performed by using unsupervised 
learning methods, such as clustering, to group the patients based on the 
characteristics and features from the available parameters derived from 
clinical investigation together with results from sleep recordings 
[119–121]. Phenotypes may be assessed by separating SDB patients 
based on their symptoms, comorbidities, clinical examination, and sleep 
quality measures [123–126]. For example, phenotyping has been con
ducted based on comorbidities and daytime symptoms [125] with dif
ferences appearing in positive airway pressure (PAP) treatment 
outcomes between the groups [127]. However, the currently discovered 
phenotypes are still relying on conventional parameters with their 
known shortcomings. In the future, cluster analyses could benefit from 
including features such as microstructure of sleep architecture [23,128], 
spindle and k-complex morphology [88,129,130], frequency domain 
information and intensity of arousals [95], breath-by-breath upper-air
way flow-limitation [131], and detailed characterization of desatura
tions [60,74]. 

However, as the scoring practices differ, and sleep staging and 
arousal detection suffer from a low inter-rater agreement, the clusters 
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found in different studies are not directly comparable. It must be 
acknowledged, that the highly differing ranges of used parameters, the 
normalization methods, and the method chosen for clustering for a 
specific set of data influence the performance of the model and the re
sults of the clustering [132,133]. In general, the usage of ratio param
eters in sleep medicine has been questioned [36], as they do not 
represent total or absolute exposure. A practical example of this is the 
sleep stage percentage: a proportion of 15 % of stage N3 sleep can be 
vastly different in minutes between individuals sleeping e.g. total of 5 or 
9 h. Furthermore, as it has been shown that N3 sleep affects the meta
bolic waste clearance from the brain [134,135], the proportion or ratio 
metrics related to total sleep time may not be the optimal choice when 
neurocognitive deficits are the target outcome. 

Simply utilizing data-driven methods to discover clusters within a 
single dataset will not be enough to reach significant clinical benefits 
and will not easily generalize across populations. Usually, the identified 
clusters can only be used for describing the current data and by defini
tion, only describe the data-specific differences between the groups. 
Thus, mechanisms and pathways linking the identified clusters back to 
measurable characteristics and classifying new datasets with these are 
needed. These classifications and characterizations need to undergo 
stringent multi-centre validation to determine their generalizability and 
the possibility to explain SDB severity and link to comorbidities and 
symptoms. 

The endotyping of SDB aims to explain the pathophysiological origin 
of the SDB and the reasons leading to the visible phenotypes. For 
example, the anatomical collapsibility and neuromuscular recovery of 
the upper airways, the arousal threshold, and ventilatory control have 

been suggested to explain the phenotypes and be possible pathways 
guiding treatment decisions in the future [124,136,137]. However, the 
assessment of these mechanisms often requires invasive measurements 
such as using an esophageal pressure catheter, electrodes, and a pneu
motachograph [65,138]. However, modelling of the ventilatory control 
system has provided promising surrogates of these traits relying only on 
signals recorded during conventional clinical PSGs [58,84,139,140]. 
These surrogates have been assessed in recent randomized controlled 
trials to investigate drug mechanisms [141–143] and to explain com
pliances in OSA treatment to support clinical decision-making [136]. 

Currently, the AHI together with subjective symptoms, clinical ex
amination, and comorbidities guide the treatment decisions instead of 
the pathophysiological endotypes or more distinct measures of the 
overnight pathology such as the degree of desaturations or cardiovas
cular functionality. Novel diagnostic approaches may better charac
terize the underlying mechanisms of SDB or the most predictive 
diagnostic parameters. This could lead to more personalized treatment 
approaches specifically targeting the endotypes or the causes of adverse 
health outcomes. However, most of these concepts and approaches are 
still in a research state, and only a few fully released analysis tools or 
commercial products exist for phenotyping and endotyping. It is there
fore of high priority to conduct further large-scale and multicenter 
studies to bring forward the validation of these methods, make them 
accessible to clinicians, and show their applicability in guiding thera
peutic decision-making. Ultimately, more detailed phenotyping and 
endotyping may move the diagnostic decision-making and treatment 
pathways forward through two different approaches: (1) phenotyping 
can assist in identifying the characteristics most associated with 

Table 1 
New technological solutions for sleep-disordered breathing (SDB) diagnosis and assessment and their potential applications in care.  

Technology Metrics and Methods Associated Evidence Potential Application in Care 

Machine learning 
algorithms 

Analysis of multimodal data, deep learning- 
based methods to analyze respiratory events and 
sleep stages 

Studies show improved accuracy in SDB diagnosis 
and automation of scoring [21,45,46,51,53] 

Enhances diagnostic accuracy while reducing 
the manual workload  

Wearable/nearable 
sleep monitors 

Heart rate, oxygen levels, movement, snoring, 
radar technologies, sleep mattresses, 
smartwatches, wearable electroencephalography 

Studies show a correlation between wearable and 
nearable data-derived sleep stages and respiratory 
events and can provide useful information on 
respiration and heart-rate-variability [20,47,50, 
55] 

Helps in the initial assessment, screening and 
monitoring of sleep patterns and SDB symptoms, 
potential for SDB diagnosis  

Smartphone apps Patient follow-up, questionnaires, cognitive 
testing, snoring detection 

Capability to collect various metrics and data from 
patients, decent snoring detection and potential 
for simplified screening for SDB [168] 

Easily implementable methods to collect patient- 
reported outcomes during treatment and to gain 
other subjective metrics and other relevant 
information (e.g. sleep diaries and cognitive 
functioning)  

Portable 
polysomnography 
devices 

Comprehensive sleep studies Substantial correlation with in-lab 
polysomnography [22,159,160] 

Comprehensive sleep studies in a familiar 
environment, possibly over multiple nights with 
a reduced first-night effect  

Analysis of sleep 
microstructure 

Deep learning-based analysis of sleep 
conventionally and with a better temporal 
resolution, Odds Ratio Product (ORP), cyclic 
alternating pattern (CAP) 

Studies show increased capability to differentiate 
fragmented sleep architectures and better quantify 
the sleep depth on a continuous scale [20,23] 

Deeper understanding of fragmented sleep and 
SDB-specific microstructural changes as well as 
normal sleep, the possibility for targeted 
interventions  

Quantifying 
physiological 
effects 

Hypoxemia, respiratory events, 
electrocardiography (ECG)-based 
quantifications, pulse transit time, vascular 
stiffness, cardiorespiratory coupling 

Hypoxemia-based metrics better correlate to 
various comorbidities, the length of the respiratory 
events differs between patients, SDB patients have 
differing ECG morphologies [59,60,74–77,93] 

Better understanding of underlying effects of 
SDB and potential for targeted interventions  

Phenotyping and 
endotyping 

Clustering, classifiers, machine learning-based 
methods (e.g. unsupervised learning) 

SDB patients express differing phenotypes and 
endotypes regardless of conventional severity 
assessments [84,118–122,140] 

More detailed and individualized diagnosis 
potentially leading to more targeted treatment 
pathways  
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deleterious outcomes and help focus on the treatment for those who 
require it while avoiding unnecessary treatment of individuals with a 
low likelihood of benefits; and (2) endotyping enables identifying in
dividual pathophysiological causes which facilitates the development of 
new therapies and individualizes and targets the optimal treatment 
pathway for the individual. Table 1. 

4. Future directions 

4.1. The need for big data approaches 

In the future, clinical practice will likely rely increasingly on auto
matically derived SDB characteristics and datamarkers instead of relying 
on simplistic metrics (Fig. 1). Automatic analysis methods and machine 
learning have already been used to automatize sleep staging [20,45–47, 
49,50,144,145] and respiratory event scoring [21,146,147] with high 
accuracy. Similar solutions will likely become more widely adopted and 
implemented in clinical practice while also enabling the efficient 

Fig. 1. The diagnostic process of sleep-disordered breathing (SDB). Currently (left side), the diagnostic progress for SDB relies on a complex, in-lab recording 
conducted only over a single night. This recording is manually scored by a healthcare professional and can take up to hours. However, this information is then 
compressed into simplistic metrics (e.g. apnea-hypopnea index, AHI) to guide the diagnosis alongside subjective measures (e.g. Epworth sleepiness scale, ESS). 
Afterwards, no consistent follow-up is conducted and only patients treated with continuous positive airway pressure (CPAP) receive a rough estimate of the reduction 
of AHI. We propose that in the future (right side), the diagnosis will rely more on multi-night recordings with the possibility of at-home recordings alongside long- 
term follow-up studies of sleep patterns and SDB characteristics. These are then comprehensively, but automatically, analyzed to provide detailed information on the 
complex disease characteristics, correlations, and phenotypes. Finally, the progression and treatment of SDB are consistently followed by at-home recordings that are 
automatically analyzed and the information is accessible to both the patient and healthcare provider. 
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generation of reliable, comparable, and consistent scoring for large 
research datasets. However, while the methods can make scoring more 
robust and reproducible, a large proportion of the benefits that come 
with machine learning and other data analytical methods are lost. Ul
timately, these methods could, for example, resolve temporal patterns in 
EEG that do not reflect any of the known sleep patterns but correlate 
well with symptomology. Similarly, the AHI should not be used as a sole 
baseline and outcome metric when devising novel data analytical and 
machine learning-based methods and novel biomarkers and metrics. 
Moving forward will require a paradigm shift in research; the data 
analysis methods should be used to reveal patterns and datamarkers in 
the PSG data that are directly associated with clinical outcomes of in
terest. Meanwhile, these results should promote and guide further pro
spective clinical trials to validate the new clinical pathways and 
outcomes. Targeted clinical trials are needed where researchers and 
clinicians embrace novel and innovative approaches without limiting 
the studies only to methods that have been used for decades. 

One major demand in sleep research is large-scale multicenter 
datasets. In addition, the application of complementary methods in 
novel ways, and multidisciplinary efforts are needed. Currently, sleep 
clinics are the primary source of research data and a major part of 
studies rely solely on single-centre study populations. Most importantly, 
the datasets usually lack a healthy reference group without any com
plaints of poor sleep quality or daytime sleepiness. Moreover, the data 
does not always contain sufficient variance in terms of ethnicity, age, 
body mass index, and gender, and the datasets usually lack some 
demographical or clinical aspects as well as information on comorbid
ities and medications. Additionally, there is a need to embrace the 
possibilities wearables and nearables provide as complementary data 
sources for long-term continuous monitoring. While wearables cannot 
yet reach the diagnostic accuracy of an in-laboratory PSG, they could 
still enable noticing patient-specific trends and variability in SDB 
severity, especially when combined with traditional overnight studies. 
However, most commercial wearables are designed and optimized for 
the general, healthy population and may initially produce unreliable 
outputs for SDB populations and may be sensitive to the effects of 
various medications. There is a need to implement these in clinical 
studies to validate and optimize their usage for different clinical pop
ulations to enhance their adaption. However, separate considerations 
are needed for pediatric populations, as the symptomology, clinical 
manifestations, and diagnostic criteria differ in children. 

Besides multicenter datasets, the field needs prospective clinical 
trials and follow-up studies implementing the new methodologies and 
not only limiting to traditional clinical practice. Even though re
searchers have been able to distinguish several new biomarkers, PSG 
parameters, endotypes, and phenotypes, the underlying traits behind the 
progression of SDB remain partially unknown. As SDB often develops 
slowly over time unknown to the affected, discerning how long the in
dividual has suffered from it is practically impossible from a single-night 
PSG recording. Multiple-night studies, as well as follow-up studies, 
could help enable a better understanding of the underlying physiological 
cascades of residual excessive daytime sleepiness, development of neu
rocognitive deficits, and cardiometabolic consequences. In addition, 
long-term treatment monitoring could reveal insights for optimized 
treatment pathways and move away from the mentality that CPAP is the 
treatment choice for all and the single most important monitored effect 
is a reduction in the AHI. As the current diagnostic devices are not best 
suited for long-term monitoring, there is a clear need to also develop 
simplified recording setups. 

Alongside comprehensive clinical trials and follow-up studies gath
ering objective data, there is a pressing need to incorporate more rele
vant and detailed outcome metrics of patients, including patient- 
reported outcome measures (PROMs). PROMs can provide invaluable 
insights into the perspective of the patient, capturing the impact of SDB 
on their quality of life, daily functioning, and overall well-being [148, 
149]. Incorporating PROMs could facilitate a more comprehensive 

approach to patient care while also helping in identifying subtler, yet 
significant, effects of the disease and its treatment that may not be 
captured by traditional clinical measures alone. This approach could 
facilitate a better understanding of the disease trajectory, treatment 
responsiveness, and long-term outcomes, ultimately leading to more 
personalized and effective treatment strategies. By combining objective 
clinical measures with subjective patient experiences, we can develop a 
more nuanced understanding of SDB, its impact on patients’ lives, and 
the effectiveness of different treatment approaches to both drive clinical 
care and research forward. 

4.2. Translation of research to clinical practice 

Ultimately, SDB research will lead to a more efficient diagnosis, help 
in informed decision-making, and assist in personalized and individu
alized SDB severity assessment and treatment. Before implementation, 
these will require stringent studies, clinical trials, and large collabora
tive multi-centre efforts. Overall, all the obtained results must be linked 
back to measurable and interpretable characteristics to provide a diag
nostic benefit [86]. Explainability, reliability, and generalizability are 
essential to translate novel diagnostic methods to clinical practice and 
will help in the regulatory processes as well as clinical validation and 
acceptance. 

Currently, the in-laboratory PSG is considered the most compre
hensive and reliable diagnostic method for SDB [18,150]. However, 
alternatives to in-laboratory PSG already exist and all devices have their 
intended usages with advantages and limitations [22]. For example, a 
home sleep apnea test is often used for individuals with a high pre-test 
probability for OSA but omits information on sleep architecture. In 
addition, actigraphy and other wearables and nearables can be used for 
long-term monitoring of wake-sleep patterns but are less capable of 
assessing detailed sleep structure and currently suffer from low reli
ability in determining the total sleep time [151,152]. However, there 
has been a surge in technological development in recent years in 
creating more precise, simpler wearable and nearable solutions for the 
recording setup [153–160]. The home-based measurements allow the 
patient to sleep in a familiar environment and are a more cost-effective 
option [161]. While sleep may be more natural in a home environment, 
the measurements are done without supervision by a healthcare pro
fessional and can suffer from a higher failure rate [161,162]. However, 
advancements in telemedicine and remote monitoring may be viable 
options to mitigate the failure risk. While this will likely not scale up to 
multi-night studies, these methods can guide the individual and ensure 
that the first recorded night is as high-quality as reasonably possible. All 
in all, both home and in-laboratory measurements have their flaws and 
benefits; these should be considered carefully when interpreting studies. 
One important future direction would, thus, be the optimization and 
harmonization of the measurement setup. Investigating the streamlined 
recording setup would be beneficial for both clinical purposes as well as 
research aspects. 

Finally, while PSG is an extensive measurement setup and the rise of 
wearables and nearables, machine learning, and precision medicine can 
move the field forward, it should be acknowledged that explanatory 
factors for disease progression and symptomatology may remain outside 
the conventional or wearable-based sleep recordings. For example, 
magnetic resonance imaging may give insight into pathophysiological 
factors, novel blood biomarkers may explain the restorativeness of sleep 
and physiological effects of the disease, and participatory medicine 
supported by digital follow-up may engage patients [163–167]. Conse
quently, we should emphasize cross-speciality interactions in clinical 
work and multidisciplinarity in sleep research. Novel scientific discov
eries from biomedicine, radiology, computer science, and animal studies 
can help us to resolve the highly fascinating and complex puzzle that is 
called SDB. 
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5. Conclusions 

There has been a surge of recent advances in diagnosing and 
assessing the severity of SDB and the related health sequelae mostly due 
to innovations that have been enabled by technological and computa
tional advancements. However, clinical practice is still getting 
acquainted with these new methodologies and AHI has remained the 
status quo. To advance the diagnosis and management of SDB, large- 
scale multidisciplinary research efforts alongside clinical validation 
and implementation of the outcomes of prospective clinical trials, and 
eventually, clinical practice are needed. 

In the future, the simplistic parameters should be complemented by 
metrics better explaining the phenomenon of interest accurately, 
whether it is SDB severity, physiological effects, treatment outcomes, or 
risk of developing comorbidities. While the interpretation of metrics 
may initially require adaptation, this will be a step toward more indi
vidualized diagnostics and provide benefits to both the patient and the 
sleep experts with the ultimate goal being improved health and quality 
of life. The diagnoses and treatment decisions should not rely on simple 
metrics but instead, be driven by and based on individual pathologies 
and optimized treatment pathways; this will require informed data- 
analysis-assisted decision-making. It remains to be seen what the final 
pathways will be that drive the clinical practice forward. However, as 
researchers and clinicians, we should remember that this is not a race to 
the finish line with only a single winner: rather we should focus on 
tirelessly working together in a multidisciplinary way toward the future 
of sleep medicine. 

Practice points  

1. Sleep research and diagnostic practices mostly rely on outdated 
metrics and laborious methods reducing the diagnostic capacity and 
preventing timely diagnosis and treatment.  

2. Collaboration among multiple medical specialties, disciplines, and 
professions is crucial for a comprehensive evaluation of sleep- 
disordered breathing. This interdisciplinary approach is equally 
important in sleep research to foster a holistic understanding of sleep 
disorders.  

3. In the future, the simplistic parameters should be complemented by 
metrics better explaining the phenomenon of interest accurately, 
whether it is sleep-disordered breathing severity, physiological ef
fects, treatment outcomes, or the risk of developing comorbidities. 

Research agenda  

1. Research should not be driven by conventional diagnostic practices; 
rather, it should renew the current status quo in clinics towards 
improved, patient-centered care.  

2. A major demand in sleep research is large-scale multi-centre datasets 
including cohorts of non-symptomatic, healthy volunteers and 
openly available data together with multi-night studies and follow- 
up series. 

3. The application of different realms of big data, data analytical, ma
chine learning, and other data-driven approaches could provide 
breakthroughs in the coming years to fully utilize the potential of all 
the collected medical and overnight data. 

Glossary of terms 

AHI apnea-hypopnea index 
CAP cyclic alternating pattern 
CO2 carbon dioxide 
(C)PAP (continuous) positive airway pressure 
CRC cardiorespiratory coupling 
ECG electrocardiogram 
EEG electroencephalography 

ESS Epworth sleepiness scale 
HRV heart rate variability 
N1 light sleep stage 1 
N2 light sleep stage 2 
N3 deep sleep 
NREM non-rapid eye movement sleep 
OSA obstructive sleep apnea 
ORP Odds Ratio Product 
PPG photoplethysmography 
PSG polysomnography 
REM rapid eye movement sleep 
SDB sleep-disordered breathing 
SpO2 blood oxygen saturation 
UA upper airway 
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differs between hypopnea and obstructive apnea events and is modulated by their 
duration in obstructive sleep apnea. Sleep Breath 2017;21:829–35. https://doi. 
org/10.1007/s11325-017-1513-6. 

[73] Muraja-Murro A, Kulkas A, Hiltunen M, Kupari S, Hukkanen T, Tiihonen P, et al. 
The severity of individual obstruction events is related to increased mortality rate 
in severe obstructive sleep apnea. J Sleep Res 2013;22:663–9. https://doi.org/ 
10.1111/jsr.12070. 

[74] Kainulainen S, Duce B, Korkalainen H, Oksenberg A, Leino A, Arnardottir ES, 
et al. Severe desaturations increase psychomotor vigilance task-based median 
reaction time and number of lapses in obstructive sleep apnoea patients. Eur 
Respir J 2020;55. https://doi.org/10.1183/13993003.01849-2019. 

[75] Rissanen M, Korkalainen H, Duce B, Sillanmäki S, Pitkänen H, Suni A, et al. 
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[168] Pires GN, Arnardóttir ES, Islind AS, Leppänen T, McNicholas WT. Consumer sleep 
technology for the screening of obstructive sleep apnea and snoring: current 
status and a protocol for a systematic review and meta-analysis of diagnostic test 
accuracy. J Sleep Res 2023. https://doi.org/10.1111/jsr.13819. 

H. Korkalainen et al.                                                                                                                                                                                                                           

https://doi.org/10.1109/ACCESS.2021.3099987
https://doi.org/10.1378/chest.122.4.1156
https://doi.org/10.1378/chest.122.4.1156
http://refhub.elsevier.com/S1087-0792(23)00130-2/sref162
http://refhub.elsevier.com/S1087-0792(23)00130-2/sref162
http://refhub.elsevier.com/S1087-0792(23)00130-2/sref162
https://doi.org/10.1186/s40478-020-01051-z
https://doi.org/10.2147/NSS.S248643
https://doi.org/10.1177/0271678X15622047
https://doi.org/10.1038/srep29671
https://doi.org/10.1038/srep29671
https://doi.org/10.1038/s41467-018-07318-3
https://doi.org/10.1111/jsr.13819

	Review and perspective on sleep-disordered breathing research and translation to clinics
	1 Introduction
	2 Current practices in research and diagnostics
	2.1 Historical overview
	2.2 Research aspects

	3 Utilizing the full potential of PSG - pathways between physiological effects, symptoms, and comorbidities
	3.1 Physiological effects
	3.2 Sleep architecture and quality
	3.3 Phenotyping and endotyping SDB

	4 Future directions
	4.1 The need for big data approaches
	4.2 Translation of research to clinical practice

	5 Conclusions
	Practice points
	Research agenda

	Glossary of terms
	Financial disclosure
	Non-financial disclosure
	Shortened title
	References


