62 research outputs found

    Malignant Lymphoma with Severe Infiltrative Growth into Skeletal Muscles in WBN/Kob Rats

    Get PDF
    Although spontaneously occurring neoplasms have been reported repeatedly in F344, SD and Wistar rats, which are commonly used strains for routine toxicologic and carcinogenicity studies, there are only a few reports of malignant lymphoma or lymphatic leukemia except for large granular lymphocytic leukemia (LGL) in F344 rats. Malignant lymphoma (lymphosarcoma) is thought to be uncommon in F344 rats. The authors encountered malignant lymphomas of the non-LGL leukemia type with characteristic pathologic features in WBN/Kob rats. The mean age at onset of the disease in all 13 affected rats (8 males and 5 females) was about 60 weeks. Common and characteristic clinical signs were abnormal gait with hind limb paralysis. Macroscopically, the enlargement of the lymph nodes, spleen and liver was slight to moderate. Scattered multiple white-to-gray nodules encompassed the aorta and assumed a bead-like appearance near the thoracic and lumbar vertebrae. Histopathologically, neoplastic proliferative changes were predominant in the bone marrow tissue of the entire body, and many tumor cells infiltrated the spleen and several lymph nodes. The most striking histological features were constant and severe infiltration of tumor cells in the adipose tissue and skeletal muscle adjacent the thoracic and lumber vertebrae. Immunohistochemically, all tumor cells were positive for B-cell markers (PAX-5, CD79a and CD45) and negative for CD3. From the results of immunohistochemistry and morphological examination, these tumors were diagnosed as malignant B-cell lymphomas

    Structural characterization of N-lignoceroyl (C24:0) sphingomyelin bilayer membranes : A reevaluation

    Get PDF
    Sphingomyelin (SM) is a membrane lipid and plays important roles in signaling, protein trafficking, cell growth and death. We investigated the structure of hydrated highly asymmetric SM, N-Lignoceroyl (C24:0) SM, bilayers with X-ray diffraction (XRD), simultanous small angle X-ray scattering (SAXS) and wide angle XRD, and SAXS measurements. At temperatures between two endothermic transitions of hydrated C24:0 SM bilayers, the C24:0 SM formed a ripple phase with the ripple periodicity of ~12-14 nm. About 3 month incubation at 277 K induced the formation of a stable phase with a short lamellar spacing of 5.62 nm. Based upon the structures revealed by this study and the phase behavior, we discuss the intermolecular interactions between C24:0 SM molecules in the bilayer membrane

    Structural characterization of N

    Full text link

    Clinical evaluation of a fully automated and high-throughput molecular testing system for detection of influenza virus

    Get PDF
    Introduction: We investigated the performance of the cobas® 6800 system and cobas SARS-CoV-2 & Influenza A/B, a fully automated molecular testing system for influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This enabled an assay in a batch of 96 samples in approximately 3 h. Methods: An assay was performed using the cobas SARS-CoV-2 & Influenza A/B on the cobas 6800 system for samples collected in four facilities between November 2019 and March 2020 in our previous study. The results were compared with those obtained using the reference methods.Results: Of the 127 samples analyzed, the cobas SARS-CoV-2 & Influenza A/B detected influenza A virus in 75 samples, of which 73 were positive using the reference methods. No false negative results were observed. The overall positive and negative percent agreement for influenza A virus detection were 100.0% and 96.3%, respectively. There were no positive results for the influenza B virus or SARS-CoV-2.Conclusion: The cobas 6800 system and cobas SARS-CoV-2 & Influenza A/B showed high accuracy for influenza A virus detection and can be useful for clinical laboratories, especially those that routinely assay many samples

    Advanced Clinical Usefulness of Ultrasonography for Diseases in Oral and Maxillofacial Regions

    Get PDF
    Various kinds of diseases may be found in the oral and maxillofacial regions and various modalities may be applied for their diagnosis, including intra-oral radiography, panoramic radiography, ultrasonography, computed tomography, magnetic resonance imaging, and nuclear medicine methods such as positron emission tomography. Of these modalities, ultrasound imaging is easy to use for the detection of noninvasive and soft tissue-related diseases. Doppler ultrasound images taken in the B-mode can provide vascular information associated with the morphology of soft tissues. Thus, ultrasound imaging plays an important role in confirming the diagnosis of many kinds of diseases in such oral and maxillofacial regions as the tongue, lymph nodes, salivary glands, and masticatory muscles. In the present article, we introduce three new applications of ultrasonography: guided fine-needle aspiration, measurement of tongue cancer thickness, and diagnosis of metastasis to cervical lymph nodes

    Environmental impact on star-forming galaxies in a z0.9z \sim 0.9 cluster during course of galaxy accretion

    Full text link
    Galaxies change their properties as they assemble into clusters. In order to understand the physics behind that, we need to go back in time and observe directly what is occurring in galaxies as they fall into a cluster. We have conducted a narrow-band and JJ-band imaging survey on a cluster CL1604-D at z=0.923z=0.923 using a new infrared instrument SWIMS installed at the Subaru Telescope. The narrow-band filter, NB1261, matches to Hα\alpha emission from the cluster at z=0.923z=0.923. Combined with a wide range of existing data from various surveys, we have investigated galaxy properties in and around this cluster in great detail. We have identified 27 Hα\alpha emitters associated with the cluster. They have significant overlap with MIPS 24μ\mum sources and are located exclusively in the star forming regime on the rest-frame UVJUVJ diagram. We have identified two groups of galaxies near the cluster in the 2D spatial distribution and the phase-space diagram, which are likely to be in-falling to the cluster main body. We have compared various physical properties of star forming galaxies, such as specific star formation rates (burstiness) and morphologies (merger) as a function of environment; cluster center, older group, younger group, and the field. As a result, a global picture has emerged on how the galaxy properties are altered as they assemble into a denser region. This includes the occurrence of mergers, enhancement of star formation activity, excursion to the dusty starburst phase, and eventual quenching to a passive phase.Comment: 19 pages, 15 figures. Accepted for publication in ApJ. Error bars in Table 2 correcte

    Stress rotations and the long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment

    Get PDF
    International audienceWe used a field analysis of rock deformation microstructures and mesostructures to reconstructthe long-term orientation of stresses around two major active fault systems in Japan, the Median TectonicLine and the Rokko-Awaji Segment. Our study reveals that the dextral slip of the two fault systems, activesince the Plio-Quaternary, was preceded by fault normal extension in the Miocene and sinistral wrenching inthe Paleogene. The two fault systems deviated the regional stress field at the kilometer scale in their vicinityduring each of the three tectonic regimes. The largest deviation, found in the Plio-Quaternary, is a more faultnormal rotation of the maximum horizontal stress to an angle of 79° with the fault strands, suggesting anextremely low shear stress on the Median Tectonic Line and the Rokko-Awaji Segment. Possible causes of thislong-term stress perturbation include a nearly total release of shear stress during earthquakes, a low staticfriction coefficient, or lowelastic properties of the fault zones comparedwith the country rock. Independently ofthe preferred interpretation, the nearly fault normal orientation of the direction of maximum compressionsuggests that the mechanical properties of the fault zones are inadequate for the buildup of a pore fluidpressure sufficiently elevated to activate slip. The long-term weakness of the Median Tectonic Line and theRokko-Awaji Segment may reside in low-friction/low-elasticity materials or dynamic weakening rather than inpreearthquake fluid overpressures
    corecore