118 research outputs found

    Major contribution of sulfide‐derived sulfur to the benthic food web in a large freshwater lake

    Get PDF
    In freshwater systems, contributions of chemosynthetic products by sulfur-oxidizing bacteria in sediments as nutritional resources in benthic food webs remain unclear, even though chemosynthetic products might be an important nutritional resource for benthic food webs in deep-sea hydrothermal vents and shallow marine systems. To study geochemical aspects of this trophic pathway, we sampled sediment cores and benthic animals at two sites (90 and 50 m water depths) in the largest freshwater (mesotrophic) lake in Japan: Lake Biwa. Stable carbon, nitrogen, and sulfur isotopes of the sediments and animals were measured to elucidate the sulfur nutritional resources for the benthic food web precisely by calculating the contributions of the incorporation of sulfide-derived sulfur to the biomass and of the biogeochemical sulfur cycle supporting the sulfur nutritional resource. The recovered sediment cores showed increases in ³⁴S-depleted sulfide at 5 cm sediment depth and showed low sulfide concentration with high δ³⁴S in deeper layers, suggesting an association of microbial activities with sulfate reduction and sulfide oxidation in the sediments. The sulfur-oxidizing bacteria may contribute to benthic animal biomass. Calculations based on the biomass, sulfur content, and contribution to sulfide-derived sulfur of each animal comprising the benthic food web revealed that 58%–67% of the total biomass sulfur in the benthic food web of Lake Biwa is occupied by sulfide-derived sulfur. Such a large contribution implies that the chemosynthetic products of sulfur-oxidizing bacteria are important nutritional resources supporting benthic food webs in the lake ecosystems, at least in terms of sulfur. The results present a new trophic pathway for sulfur that has been overlooked in lake ecosystems with low-sulfate concentrations

    Nitrate-use traits of understory plants as potential regulators of vegetation distribution on a slope in a Japanese cedar plantation

    Get PDF
    [Background and Aims] Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan. [Methods]At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO3[-]-N) use traits, and compared the results with the soil traits. [Results]Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO3[-]-N. Pieris japonica lacks the capacity to use NO3[-]-N as a N source, but other species do use NO3[-]-N. Lindera triloba, whose distribution is unrelated to soil NO3[-]-N availability, changes the extent to which it uses NO3[-]-N in response to soil NO3[-]-N availability. [Conclusions]Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO3[-]-N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions

    The Potential of NO 3

    Get PDF
    Responses of seedlings of a shrub species, Lindera triloba, grown in perlite culture medium, to nitrate (NO3–-N) supply were investigated to estimate the saturating point of available NO3–-N for plant utilization. NO3–-N concentration and nitrate reductase activity (NRA) in leaves and roots were used as indicators of NO3–-N uptake and assimilation by L. triloba. Root NRA increased with NO3–-N supply when concentrations were low and reached a plateau at high NO3–-N concentrations. On the other hand, root NO3–-N concentration increased linearly with NO3–-N supply; therefore, it is suggested that NO3–-N uptake did not limit NO3–-N assimilation by L. triloba. In contrast, leaf NRA and leaf NO3–-N concentration were low and were not influenced by NO3–-N supply. This may be caused by the lack of transport of NO3–-N from roots to leaves. The NO3–-N retained in perlite was compared with NO3–-N pool sizes in soils from a forest where L. triloba occurs naturally to estimate the level of NO3–-N availability to plants in the forest soil. The maximum NO3–-N pool size in the forest soil was comparable to concentrations at which root NRA reached a plateau in perlite cultures. These results indicate that soil NO3–-N availability is below the saturation point for NO3–-N uptake by L. triloba, and it is the limiting factor of NO3–-N utilization by L. trilobaunder field conditions in which this species naturally occurs

    Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils

    Get PDF
    Background Knowledge of biological and climatic controls in terrestrial nitrogen (N) cycling within and across ecosystems is central to understanding global patterns of key ecosystem processes. The ratios of 15N:14N in plants and soils have been used as indirect indices of N cycling parameters, yet our understanding of controls over N isotope ratios in plants and soils is still developing. Scope In this review, we provide background on the main processes that affect plant and soil N isotope ratios. In a similar manner to partitioning the roles of state factors and interactive controls in determining ecosystem traits, we review N isotopes patterns in plants and soils across a number of proximal factors that influence ecosystem properties as well as mechanisms that affect these patterns. Lastly, some remaining questions that would improve our understanding of N isotopes in terrestrial ecosystems are highlighted. Conclusion Compared to a decade ago, the global patterns of plant and soil N isotope ratios are more resolved. Additionally, we better understand how plant and soil N isotope ratios are affected by such factors as mycorrhizal fungi, climate, and microbial processing. A comprehensive understanding of the N cycle that ascribes different degrees of isotopic fractionation for each step under different conditions is closer to being realized, but a number of process-level questions still remain

    Natural 15 N Abundance of Plants and Soil N in a Temperate Coniferous Forest

    Full text link
    Measurement of nitrogen isotopic composition (δ 15 N) of plants and soil nitrogen might allow the characteristics of N transformation in an ecosystem to be detected. We tested the measurement of δ 15 N for its ability to provide a picture of N dynamics at the ecosystem level by doing a simple comparison of δ 15 N between soil N pools and plants, and by using an existing model. δ 15 N of plants and soil N was measured together with foliar nitrate reductase activity (NRA) and the foliar NO 3 – pool at two sites with different nitrification rates in a temperature forest in Japan. δ 15 N of plants was similar to that of soil NO 3 – in the high-nitrification site. Because of high foliar NRA and the large foliar NO 3 – pool at this site, we concluded that plant δ 15 N indicated a great reliance of plants on soil NO 3 – there. However, many δ 15 N of soil N overlapped each other at the other site, and δ 15 N could not provide definitive evidence of the N source. The existing model was verified by measured δ 15 N of soil inorganic N and it explained the variations of plant δ 15 N between the two sites in the context of relative importance of nitrification, but more information about isotopic fractionations during plant N uptake is required for quantitative discussions about the plant N source. The model applied here can provide a basis to compare δ 15 N signatures from different ecosystems and to understand N dynamics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41374/1/10021_2002_Article_132.pd

    Striped catfish (Pangasianodon hypophthalmus) exploit food sources across anaerobic decomposition- and primary photosynthetic production-based food chains

    Get PDF
    Dietary information from aquatic organisms is instrumental in predicting biological interactions and understanding ecosystem functionality. In freshwater habitats, generalist fish species can access a diverse array of food sources from multiple food chains. These may include primary photosynthetic production and detritus derived from both oxic and anoxic decomposition. However, the exploitation of anoxic decomposition products by fish remains insufficiently explored. This study examines feeding habits of striped catfish (Pangasianodon hypophthalmus) at both adult and juvenile stages within a tropical reservoir, using stable carbon, nitrogen, and sulfur isotope ratios (δ¹³C, δ¹⁵N, and δ³⁴S, respectively) and fatty acid (FA) analyses. The adult catfish exhibited higher δ¹⁵N values compared to primary consumers that feed on primary photosynthetic producers, which suggests ingestion of food sources originating from primary photosynthetic production-based food chains. On the other hand, juvenile catfish demonstrated lower δ¹⁵N values than primary consumers, correlating with low δ³⁴S value and large proportions of bacterial FA but contained small proportions of polyunsaturated FA. This implies that juveniles utilize food sources from both anoxic decomposition and primary photosynthetic production-based food chains. Our results indicate that food chains based on anoxic decomposition can indeed contribute to the dietary sources of tropical fish species

    Convergence of soil nitrogen isotopes across global climate gradients

    Get PDF
    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss

    窒素自然安定同位体比を用いた森林生態系における窒素動態に関する研究

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・論文博士博士(農学)乙第10321号論農博第2281号新制||農||796(附属図書館)学位論文||H12||N3356(農学部図書室)UT51-2000-C88(主査)教授 武田 博清, 教授 谷 誠, 教授 小﨑 隆学位規則第4条第2項該当Doctor of Agricultural ScienceKyoto UniversityDFA
    corecore