Research Article Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy *TheScientificWorld* (2001) 1(S2), 514–519 ISSN 1532-2246; DOI 10.1100/tsw.2001.378 # The Potential of NO₃-N Utilization by a Woody Shrub Species *Lindera triloba*: ## A Cultivation Test to Estimate the Saturation Point of Soil NO₃-N for Plants Lina Koyama^{1,*}, Naoko Tokuchi¹, Muneto Hirobe¹, and Keisuke Koba² ¹Graduate School of Agriculture, Kyoto University, Kyoto 606-8502; ²Graduate School of Informatics, Kyoto University, Kyoto 606-8501 Responses of seedlings of a shrub species, Lindera triloba, grown in perlite culture medium, to nitrate (NO₃-N) supply were investigated to estimate the saturating point of available NO₃-N for plant utilization. NO₃-N concentration and nitrate reductase activity (NRA) in leaves and roots were used as indicators of NO₃-N uptake and assimilation by L. triloba. Root NRA increased with NO₃-N supply when concentrations were low and reached a plateau at high NO₃-N concentrations. On the other hand, root NO₃-N concentration increased linearly with NO₃-N supply; therefore, it is suggested that NO₃-N uptake did not limit NO₃--N assimilation by L. triloba. In contrast, leaf NRA and leaf NO₃-N concentration were low and were not influenced by NO₃-N supply. This may be caused by the lack of transport of NO₃-N from roots to leaves. The NO₃-N retained in perlite was compared with NO₃-N pool sizes in soils from a forest where L. triloba occurs naturally to estimate the level of NO₃-N availability to plants in the forest soil. The maximum NO₃-N pool size in the forest soil was comparable to concentrations at which root NRA reached a plateau in perlite cultures. These results indicate that soil NO₃-N availability is below the saturation point for NO₃-N uptake by L. triloba, and it is the limiting factor of NO₃-N utilization by *L. triloba* under field conditions in which this species naturally occurs. **KEY WORDS:** nitrate reductase activity (NRA), nitrate (NO₃-N) concentration, perlite, *Lindera triloba* **DOMAINS:** plant sciences, enzymology, metabolism, nutrition, plant processes, physiology #### INTRODUCTION The increased nitrate (NO₃⁻-N) deposition derived from human activities has altered ecosystem nitrogen (N) cycles and has increased N availability to plants. It could, therefore, reduce the diversity in ecosystems over the long term[1]. Under changing regional or global N cycles, NO₃⁻-N uptake by plants is one of the most important processes in forest ecosystem N cycles. Because NO₃⁻-N is a highly leachable anion in forest soils, plant NO₃⁻-N uptake reduces not only N loss from ecosystem, but also other nutrient cations accompanied by NO₃⁻-N leaching[2]; therefore, work is being conducted to elucidate the importance of plant NO₃⁻-N use in N cycles in ecosystems[3,4,5], and information on the potential of plants for utilizing NO₃⁻-N is needed to assess the roles of plants influencing N retention by ecosystems. Regarding assimilation processes of NO_3^--N by plants, the reduction of NO_3^--N to NH_4^+-N is required for the synthesis of organic N[6,7,8]. The first step after the uptake of NO_3^--N is the reduction of NO_3^--N to nitrite (NO_2^--N) , and the process catalyzed by nitrate reductase (NR) is known to be the rate-limiting step in the sequence of NO_3^--N assimilation processes[7,9,10]; therefore, plant nitrate reductase activity (NRA) is a useful indicator of plant NO_3^--N utilization potential. Also, the existence of NO_3^--N in plant tissues can be evidence for plant NO_3^--N uptake, as plants do not synthesize $NO_3^--N[11]$. ^{*} Corresponding author. The objectives of this study were to estimate the potential of NO₃-N use by plants and to determine whether the NO₃-N pool size in a forest soil exceeds plant NO₃-N uptake potential. For these objectives, we selected a shrub species of Lauraceae, Lindera triloba (Sieb. et Zucc.) Blume. L. triloba was one of the dominant understory species in a conifer plantation (Koyama, unpublished data), where nitrification potential had wide range (0 to 12.2 mg N 100 g dry soil⁻¹ 28 days⁻¹)[12]. Experiments were conducted (1) to describe the responses of NO₃-N use by L. triloba to NO₃-N supply and (2) to examine the relationship of NO₃-N supply to the amount of NO₃-N retained in the cultivation medium and to compare this with the NO₃-N pool size in forest soil. In seedlings of L. triloba grown in perlite medium supplied with various amounts of NO₃-N, leaf and root NRA were measured, in addition to leaf and root NO₃-N assays. The amount of NO₃-N retained in perlite was compared with the soil NO₃-N pool size in a forest where *L. triloba* is distributed. ### **METHODS** #### **Plant Cultivation and Treatment** All seeds of *L. triloba* (Sieb. et Zucc.) Blume were collected from a single seed tree in Mt. Ryuoh in Shiga Prefecture, central Japan (35°10′N, 136°20′E) in September 1997. The collected seeds were stored at about 8°C until sowed in horticultural soil in April 1998. On April 29, 1999, seedlings were washed in tap water followed by deionized water to remove soil from roots. They were then individually transplanted into plastic pots filled with approximately 600 ml perlite that was prerinsed with deionized water. Throughout the period of the experiment, all seedlings were placed under a roof of a plastic film to keep out rain. For 42 days after transplanting, each seedling was supplied daily with 200 ml nutrient solution containing 0.35 mmol l^{-1} NaH₂PO₄·2H₂O; 0.63 mmol l^{-1} KCl; 0.5 mmol l^{-1} CaCl₂·2H₂O; 0.25 mmol l^{-1} MgSO₄·7H₂O; 59.37 µmol l^{-1} Fe-EDTA; 0.43 µmol l^{-1} Cu-EDTA; 0.42 µmol l^{-1} Zn-EDTA; 0.45 µmol l^{-1} Mn-EDTA; 32.35 µmol l^{-1} H₃BO₃; 0.41 µmol l^{-1} Na₂MoO₄·2H₂O, and NO₃-N. Nitrate was added in solution as NaNO₃ at 0, 1, 10, 25, and 50 ppm (molar concentrations were 0, 0.071, 0.71, 1.79, and 3.57 mmol N l^{-1}). Each of the five treatments was replicated ten times. ## **Plant Analysis** The leaves and roots of cultivated *L. triloba* were collected from 10:00 to 14:00 on June 8, 1999 at the 42nd day after the start of NO₃-N additions. NRA was measured by a modified version of the *in vivo* test[13,14,15,16]. Samples were kept at 4°C until laboratory analysis. Two hundred leaf disks each with a diameter of 2.5 mm were cut out, and fine roots (diameter < 2 mm) were cut into about 5-mm lengths after being rinsed with deionized water. After vacuum infiltration (6 mm Hg; twice for 30 s each) with 5 ml of incubation buffer, the samples were incubated for 1 h at 30°C in the dark. The composition of the incubation buffer was 0.1 M KNO₃, 0.1 M KH₂PO₄, and 3% 1-propanol, and the pH was adjusted to about 7.5 with NaOH. Enzyme activity was stopped by placing sample vials in hot water (80°C). Leaves and roots were removed, oven-dried at 105°C, and then weighed to calculate the activity per unit dry weight. The concentration of NO₂-N produced in the incubation buffer was measured colorimetrically by diazotization[17]. The effect of plant pigment was compensated for by measurement of complete controls lacking N-naphtylethylene diamine dihydrochloride. The remaining leaves and fine roots were dried at 40°C and then ground. About 100 mg of ground sample was extracted with 10 ml of deionized water for 1 h at 45°C. The extract was filtered, and the concentration of NO₃-N in the extract was analyzed by HPLC (SHIMADZU, HIC-6A, Kyoto, Japan) within 72 h to avoid the transformation of nitrate in the extract. ## **Perlite Analysis** A 5-g subsample of perlite from each cultivation pot was extracted with 50 ml of 2 M KCl and filtered. The NO_3^- -N concentration in the extract was determined by diazotization after reduction of NO_3^- -N to NO_2^- -N with zinc powder[17]. The amount of NO_3^- -N retained in perlite was calculated as N per 100 ml core (µmol N 100 ml $^-$) and compared with the data of the NO_3^- -N pool size in the forest soil where seeds of *L. triloba* were collected (Koyama, unpublished data). In the forest, 30 soil samples were collected from areas within a 30-cm radius from ten trunks of *L. triloba* in Mt. Ryuoh; this process was repeated five times during the 1998 growing season. A total of 150 soil samples were measured to determine NO_3^- -N pool sizes in the forest. ## **Statistical Analysis** All statistical analyses were conducted using the statistical program SPSS 7.5.1[18]. Differences among NRAs or NO₃⁻-N concentrations in plants supplied with different concentrations of NO₃⁻-N were analyzed using a Kruskal–Wallis one-way analysis of variance. Multiple comparisons of mean values among treatments were performed by the sequential Bonferroni test[19] after the determination of pairwise P values by the Mann–Whitney test. In cases where multiple comparisons indicated that saturation had occurred in the relation between supplied NO₃⁻-N and NRA or NO₃⁻-N concentrations in the plants, Michaelis–Menten kinetics was applied for the relation of supplied NO₃⁻-N and plant NRA or NO₃⁻-N concentration as follows[20]: $$v = S \times V_{\text{max}}/(S + Km)$$ where v is plant NRA or NO_3^- -N concentration, S is the concentration of supplied NO_3^- -N, Vmax is maximum value, and Km is the Michaelis constant. The two parameters, Vmax and Km, in the Michaelis–Menten kinetics were estimated by an Eadie–Hofstee plot (i.e., the relation of supplied NO_3^- -N to supplied NO_3^- -N/NRA)[21], and they were applied as initial values in the nonlinear regression analysis in SPSS. Spearman rank correlation coefficients were calculated to detect a relationship between NRA and NO_3^- -N concentration in each of plant leaves and roots. Spearman rank correlation coefficients were also calculated to detect a relationship between leaves and roots for each of NRA and NO_3^- -N concentration. ### **RESULTS** ## Plant NRA and NO₃-N Concentration Root NRA changed with NO₃⁻-N supply in the range from 0.071 to 1.79 mmol N l⁻¹ supplied NO₃⁻-N (Fig. 1a); however, there was no significant difference between root NRA of individuals supplied with 1.79 and 3.57 mmol N l⁻¹ NO₃⁻-N, indicating that root NRA had reached a plateau. The nonlinear regression analysis yielded values of Vmax = 0.46 (μ mol N g dry wt⁻¹ h⁻¹) and Km = 1.33 (mmol N l⁻¹) for the relationship between root NRA and NO₃⁻-N supply. In contrast, leaf NRA remained low even at the highest concentration of NO₃⁻-N, and there was no significant difference among treatments. Root NO₃⁻-N concentrations increased with NO₃⁻-N supply (Fig 1c); however, leaf NO₃⁻-N concentrations remained low with increased NO₃⁻-N supply (Fig 1d), even though the NO₃⁻-N concentrations in leaves were higher than in roots when the concentration of supplied NO₃⁻-N was lower than 0.071 mmol N l⁻¹ (p < 0.01). Comparisons of results between roots and leaves showed that there was no significant correlation between root NRA and leaf NRA or between root NO₃⁻-N concentration and leaf NO₃⁻-N concentration (Fig. 2). There was no significant correlation between leaf NO₃⁻-N concentration and leaf NRA, although root NRA was significantly correlated with root NO₃⁻-N concentration (p < 0.01) (Fig. 3). ## Perlite NO₃--N The amount of NO_3^- -N retained in perlite increased from 0 up to 154.26 µmol N 100 ml perlite⁻¹ and was significantly correlated with the NO_3^- -N supply (p < 0.001) (Fig. 4a). Using the regres- sion of supplied NO_3^--N to retained NO_3^--N in perlite, the perlite supplied with 2.06 mmol N I^{-1} NO_3^--N was equal to the maximum NO_3^--N pool size in the forest soil (79.47 μ mol N 100 ml soil⁻¹, Fig. 4b). ## **DISCUSSION** ## Effects of NO₃⁻-N Supply on NO₃⁻-N Use by L. triloba When the concentration of supplied NO₃-N was lower than 1.79 mmol N l⁻¹, NRA in L. triloba roots increased with NO₃-N supply (Fig. 1a). Because there was no significant difference between root NRA supplied with 1.79 mmol N l⁻¹ and with 3.57 mmol N l⁻¹, it is likely that root NRA was saturated with 1.79 mmol N l⁻¹ of NO₃-N. Two possible explanations can be considered for the control of root NRA by NO₃-N: (1) limited uptake of NO₃-N and (2) limited induction of NR by NO₃-N after it is taken up. The concentration of NO₃-N in plant organs is the difference between increase of NO₃-N by uptake and decrease of NO₃-N by reduction, as plants do not synthesize NO₃-N[11]; therefore, NO₃-N concentration in plant organs must be less than or equal to the NO₃-N absorbed by the plant. Nonetheless, root NO₃-N concentrations continuously increased with NO₃-N supply, showing no plateau (Fig. 1c). This indicates that the saturation of root NRA was not caused by the limited absorption of NO₃-N, although there was a significant correlation between root NO_3 -N concentration and root NRA (p < 0.01) (Fig. 3a). This suggested that the NO₃-N uptake by L. triloba corresponds to the NO₃-N supply, even though the NO₃-N utilization of this species did not correspond to the absorbed NO₃-N when excess amounts of NO₃-N were supplied. **FIGURE 1.** Effect of NO_3^-N supply on (a) root NRA (μ mol N g dry wt⁻¹ h⁻¹), (b) leaf NRA (μ mol N g dry wt⁻¹ h⁻¹), (c) root NO_3^-N concentration (μ mol N g dry wt⁻¹), and (d) leaf NO_3^-N concentration (μ mol N g dry wt⁻¹). The curved line shown in (a) shows the Michaelis–Menten kinetics. The bars show S.E. FIGURE 2. Relationship between (a) root NRA (μ mol N g dry wt⁻¹ h⁻¹) and leaf NRA (μ mol N g dry wt⁻¹ h⁻¹) and (b) root NO₃⁻-N concentration (μ mol N g dry wt⁻¹) and leaf NO₃⁻-N concentration (μ mol N g dry wt⁻¹). Concentrations of supplied NO₃⁻-N were 0 (\bullet), 0.071 (\bullet), 0.71 (\bullet), 1.79 (\triangle), and 3.57 (\blacksquare) mmol N l⁻¹. FIGURE 3. Relationship between (a) root NO_3^-N concentration (μ mol N g dry wt^{-1}) and root NRA (μ mol N g dry wt^{-1}) and (b) leaf NO_3^-N concentration (μ mol N g dry wt^{-1}) and leaf NRA (μ mol N g dry wt^{-1}). Concentrations of supplied NO_3^-N were 0 (\bigcirc), 0.071 (\bigcirc), 0.71 (\bigcirc), 0.71 (\bigcirc) and 0.71 (\bigcirc) mmol 0.71 (\bigcirc) mmol 0.71 (\bigcirc) mmol 0.71 (\bigcirc). **FIGURE 4.** Comparison of NO_3^- -N content in perlite and forest soil. (a) Relationship between NO_3^- -N supply (mmol N I^-) and amount of retained NO_3^- -N in perlite (µmol N $100 \, \text{ml}^{-1}$). (b) Frequency distribution for soil NO_3^- -N pool size (µmol N $100 \, \text{ml}^{-1}$) in the forest where the seeds were collected (Koyama, unpublished data). The dotted lines connecting figures indicated (1) the maximum of NO_3^- -N pool size in forest soil and (2) the corresponding NO_3^- -N supply to achieve that maximum. On the other hand, there was no significant difference in leaf NRA supplied with different concentrations of NO₃-N (Fig. 1b). Moreover, mean leaf NRA values were constantly lower than root NRA, irrespective of supplied NO_3 -N concentration (p <0.001). Two reasons can be offered for very low NRA in leaves compared with roots: (1) the lack of enzyme induction in leaves and (2) the lack of NO₃-N transportation from roots to leaves. The former reason, however, is not plausible because an investigation on L. triloba naturally grown in a conifer plantation showed that this species has NRA in its leaves, and the activity was approximately comparable to root NRA detected in this study (Koyama, unpublished data); therefore, it is obvious that *L. triloba* is able to induce NR in its leaves when NO₃-N is transported to the leaves. Besides leaf NRA, leaf NO₃-N concentrations also remained low even when a high concentration of NO₃-N was supplied, and root NO₃-N concentration showed no relationship with leaf NO₃-N concentration (Figs. 1d and 2b). The lack of a significant correlation between leaf NRA and leaf NO₃-N concentration can be ascribed to the narrower range of NRA and NO₃-N concentrations in leaves than in roots (Fig. 3b); therefore, leaves of L. triloba may play only minor part in NO₃-N use in the case of seedlings, and it may be because NO₃-N absorbed by roots was not transported to the leaves. The transportation of NO₃-N in plants and the allocation of NRA are influenced by factors such as specific property, light condition, external NO₃-N availability, plant age, and/or temperature [7,8,22,23,24,25,26]. Specific differences and light conditions cannot explain the absence of (or very low) leaf NRA in the present study. It is because the same species showed foliar NRA in field investigations as stated above; and the light availability must be higher in the cultivation experiment than under the field conditions in the conifer plantation, though it is commonly accepted that the better light conditions provide plants an advantage in leaf NO₃-N reduction[7,25]; however, further information is required to clarify the effects of other possible factors. Moreover, when the concentrations of supplied NO₃⁻-N were lower than 0.071 mmol N l⁻¹, NO₃⁻-N, concentrations were significantly higher in leaves than in roots (p < 0.01), even though NRA was significantly lower in leaves than in roots across all levels of supplied NO₃⁻-N (p < 0.01). This result suggests that *L. triloba* has a storage pool of NO₃⁻-N in its leaves separate from the site of metabolism, and the NO₃⁻-N transported into the storage pool cannot be assimilated. It could, however, play a part in ionic and osmotic balance in the cells[27]. ## Estimation of NO₃⁻-N Availability in Forest Soil to NO₃⁻-N Use by *L. triloba* Because the supplied solution (200 ml) overflowed the seedling receptacles, the NO_3^- -N available to *L. triloba* was equivalent not to the total amount of added NO_3^- -N but to the amount of NO_3^- -N retained in perlite. Among the treatments, however, the amount of NO_3^- -N retained in perlite was significantly correlated with the concentration of supplied NO_3^- -N (p < 0.001) (Fig. 4a); therefore, the range of NO_3^- -N pool size in forest soils (from 0 to 79.47 µmol N 100 ml soil $^-$ 1) was equivalent to the amount of NO_3^- -N retained in perlite supplied with NO_3^- -N of 0 to 2.06 mmol N I^- 1 from the regression. The substitution of the maximum NO_3^- -N pool size in forest soil (namely, supply of 2.06 mmol N l-1 NO₃--N) for the Michaelis-Menten kinetics gives 0.28 µmol N g dry wt⁻¹ h⁻¹ in NRA, which is equivalent to 60.8% of maximum value (0.46 µmol N g dry wt⁻¹ h⁻¹). Because there was no significant difference between the seedlings supplied with 1.79 mmol N l^{-1} NO₃-N and with 3.57 mmol N l^{-1} NO₃-N (Fig. 1a), root NRA might almost reach the plateau when 2.06 mmol N l⁻¹ NO₃--N (that is equivalent to the maximum NO₃-N pool size in forest soils) was supplied; however, as the frequency distribution for soil NO₃-N pool size was positively skewed (Fig. 4b), 90% of forest soils had a smaller NO₃-N pool size than perlite supplied with 0.71 mmol N l⁻¹ NO₃-N. When NO₃-N availability is in this range, roots of *L. triloba* are likely have a value of NRA lower than 0.16 µmol N g dry wt⁻¹ h⁻¹ (35.0% of maximum), assuming the preceding Michaelis-Menten kinetics apply. Moreover, root NRA increased with NO₃-N supply across this range, suggesting that NO₃-N availability is the limiting factor for NO₃-N assimilation by L. triloba grown in forest soils. These comparisons between NO₃-N retained in perlite and NO₃-N in forest soils suggest that available NO₃-N in forest soils is below the saturation concentration for *L. triloba*. #### **ACKNOWLEDGMENTS** We would like to thank H. Takeda, N. Osawa, and T. Osono for their valuable advice. We thank Y. Asano and M. Katsuyama for their valuable advice in HPLC analysis, K. Ishimaru and other members of Laboratory of Forest Ecology, Kyoto University for their help in fieldwork and laboratory analysis, and H. J. Barclay for his linguistic help with the manuscript. We also appreciate the helpful suggestions from two anonymous reviewers and the help of the editors and the conference coordinators. ### **REFERENCES** - Bobbink, R., Hornung, M., and Roelofs, J.G.M. (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. *J. Ecol.* 86, 717–738. - 2. Vitousek, P.M., Aber, J.D., Howarth, R.H., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., and Tilman, D.G (1997) Human alteration of the global nitrogen cycle: source and consequences. *Ecol. Appl.* 7, 737–750. - 3. Zak, D.R. and Pregitzer, K.S. (1988) Nitrate assimilation by herbaceous ground flora in late successional forests. *J. Ecol.* **76**, 537–546. - Rothstein, D.E., Zak, D.R., and Pregitzer, K.S. (1996) Nitrate deposition in northern hardwood forests and the nitrogen metabolism of *Acer saccharum* marsh. *Oecologia* 108, 338–344. - 5. Rothstein, D.E. (2000) Spring ephemeral herbs and nitrogen cycling in a northern hardwood forest: an experimental test of the vernal dam hypothesis. *Oecologia* **124**, 446–453. - Haynes, R.J. and Goh, K.M. (1978) Ammonium and nitrate nutrition of plants. *Biol. Rev.* 53, 465–510. - Pate, J.S. (1983) Patterns of nitrogen metabolism in higher plants and their ecological significance. In *Nitrogen as an Ecological Factor*. Lee, J.A., McNeill, S., and Rorison, I.H., Eds. Blackwell Scientific Publications, Oxford. pp. 225–255. - Haynes, R.J. (1986) Uptake and assimilation of mineral nitrogen by plants. In *Mineral Nitrogen in the Plant–Soil System*. Kozlowski T.T., Ed. Academic Press, London. pp. 303–378. - 9. Beevers, L. and Hageman, R.H. (1969) Nitrate reduction in higher plants. *Ann. Rev. Plant Physiol.* **20**, 495–522. - Campbell, W.H. (1988) Nitrate reductase and its role in nitrate assimilation in plants. *Physiol. Plant.* 74, 214–219. - Melzer, A., Gebauer, G., and Rehder, H. (1984) Nitrate content and nitrate reductase activity in *Rumex obtusifolius*. 2. Responses to nitrate starvation and nitrogen fertilization. *Oecologia* 63, 380– 385. - Hirobe, M., Tokuchi, N., and Iwatsubo, G. (1998) Spatial variability of soil nitrogen transformation patterns along a forest slope in a *Cryptomeria japonica* D. Don plantation. *Eur. J. Soil. Biol.* 34, 123–131. - Jaworski, E.G. (1971) Nitrate reductase assay in intact plant tissues. *Biochem. Biophys. Res. Commun.* 43, 1274–1279. - Gebauer, G., Melzer, A., and Rehder, H. (1984) Nitrate content and nitrate reductase activity in *Rumex obtusifolius*. 1. Differences in organs and diurnal changes. *Oecologia* 63, 136– 142. - Högberg, P., Granstrom, A., Johansson, T., Lundmark, T.A., and Näsholm, T. (1986) Plant nitrate reductase activity as an indicator of availability of nitrate in forest soils. *Can. J. For. Res.* 16, 1165–1169. - Gebauer, G., Rehder, H., and Wollenweber, B. (1988) Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe. *Oecologia* 75, 371–385. - Keeney, D.R. and Nelson, D.W. (1982) Nitrogen: inorganic forms. In *Methods of Soil Analysis. Part 2*. Page, A.L., Miller, R.H., and Keeney, D.R., Eds. American Society of Agronomy/Soil Science Society of America, Madison, WI. pp. 643–698. - 18. SPSS (1996) SPSS for Windows. SPSS Inc., Chicago. - Rice, W.R. (1988) Analyzing tables of statistical tests. *Evolution* 43, 223–225. - King, B.J., Siddiqui, M.Y., and Glass, A.D.M. (1992) Studies of uptake of nitrate in barley. V. Estimation of root cytoplastic nitrate concentration using nitrate reductase activity: implication for nitrate influx. *Plant Physiol.* 99, 1582–1589. - 21. Metzler, D.E. (2001) Enzymes: the catalysts of cells. In *Biochemistry: The Chemical Reactions of Living Cells*. Academic Press, San Diego. pp. 455–503. - 22. Andrews, M. (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. *Plant Cell Environ.* 9, 511–519. - Fredeen, A.L., Griffin, K., and Field, C.B. (1991) Effects of light quantity and quality and soil nitrogen status on nitrate reductase activity in rainforest species of genus Piper. *Oecologia* 86, 441– 446 - Stewart, G.R., Joly, C.A., and Smirnoff, N. (1992) Partitioning of inorganic nitrogen assimilation between the roots and shoots of cerrado and forest trees of contrasting plant communities of South East Brasil. *Oecologia* 91, 511–517. - Gojon, A., Plassard, C., and Bussi, C. (1994) Root/shoot distribution of NO₃- assimilation in herbaceous and woody species. In *A Whole Plant Perspective on Carbon-Nitrogen Interactions*. Roy, J. and Garnier, E., Eds. Academic Publishing, The Hague. pp. 131–147. - Peuke, A.D. and Kaiser, W.M. (1996) Nitrate or ammonium uptake and transport, and rapid regulation of nitrate reduction in higher plants. In *Progress in Botany 57: Physiology*. Behnke, H-D., Lüttge, U., Esser, K., Kadereit, J.W., and Runge, M., Eds. Springer-Verlag, Berlin. pp. 93–113. - Martinoia, E., Heck, U., and Wiemken, A. (1981) Vacuoles as storage compartments for nitrate in barley leaves. *Nature* 289, 292–294. #### This article should be referenced as follows: Koyama, L., Tokuchi, N., Hirobe, M., and Koba, K. (2001) The potential of NO₃-N utilization by a woody shrub species *Lindera triloba*: a cultivation test to estimate the saturation point of soil NO₃-N for plants. In Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy. *TheScientificWorld* **1(S2)**, 514–519. | Received: | July | 10, 2001 | |------------|----------|----------| | Revised: | November | 8, 2001 | | Accepted: | November | 9, 2001 | | Published: | November | 20, 2001 | Submit your manuscripts at http://www.hindawi.com