111 research outputs found

    Stable C and N isotope abundances in water-extractable organic matter from air-dried soils as potential indices of microbially utilized organic matter

    Get PDF
    Stable carbon (C) and nitrogen (N) isotopes (13C and 15N) in water-extractable organic matter (WEOM) derived from air-dried soils may be applicable to elucidate the microbial decomposition of soil organic matter (SOM), which is crucial in terrestrial C cycles. A total of 40 soil samples were collected from a depth of 0–6 cm from a temperate broadleaved forest in Japan with vegetation succession from grassland approximately 150 years ago. Those soil samples were air-dried before the water extraction process and organic matter analysis. The C and N concentrations of WEOM were <3.6% of those of the bulk soil and were positively correlated with those of the bulk soil at a p-value of < 0.01. A positive correlation between the two fractions (i.e., WEOM and bulk soils) was also found for natural 13C and 15N abundances (δ13C and δ15N; p < 0.01). However, the C/N ratio of WEOM was slightly correlated with that of bulk soils, exhibiting a narrow range of values of ~10. Thus, those features of the WEOM were similar to the well-known features of microbial biomass. The δ13C and δ15N enrichments in WEOM relative to bulk soil, the difference in stable isotope abundances between bulk SOM and WEOM were negatively and positively correlated, respectively, with the concentrations of organo-mineral complexes and short-range order minerals (non-crystalline oxyhydroxides of aluminum and iron, allophane, imogolite, and allophane-like constituents), which play significant roles in SOM stabilization in soils. These relationships suggest that the stable isotopic enrichments in WEOM can be a good indicator of the microbial utilization of soil C and N under different substrate availabilities, which are crucial to SOM decomposition and decomposability substantially varying from local to global scales

    Bomb-<sup>14</sup>C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon

    Get PDF
    The largest terrestrial-to-atmosphere carbon flux is respired CO&lt;sub&gt;2&lt;/sub&gt;. However, the partitioning of soil and plant sources, understanding of contributory mechanisms, and their response to climate change are uncertain. A plant removal experiment was established within a peatland located in the UK uplands to quantify respiration derived from recently fixed plant carbon and that derived from decomposition of soil organic matter, using natural abundance &lt;sup&gt;13&lt;/sup&gt;C and bomb-&lt;sup&gt;14&lt;/sup&gt;C as tracers. Soil and plant respiration sources were found respectively to contribute ~ 36% and between 41-54% of the total ecosystem CO&lt;sub&gt;2&lt;/sub&gt; flux. Respired CO&lt;sub&gt;2&lt;/sub&gt; produced in the clipped (‘soil’) plots had a mean age of ~ 15 years since fixation from the atmosphere, whereas the &lt;sup&gt;14&lt;/sup&gt;C content of ecosystem CO&lt;sub&gt;2&lt;/sub&gt; was statistically indistinguishable from the contemporary atmosphere. Results of carbon mass balance modelling showed that, in addition to respiration from bulk soil and plant respired CO&lt;sub&gt;2&lt;/sub&gt;, a third, much older source of CO&lt;sub&gt;2&lt;/sub&gt; existed. This source, which we suggest is CO&lt;sub&gt;2&lt;/sub&gt; derived from the catotelm constituted between ~ 10 and 23% of total ecosystem respiration and had a mean radiocarbon age of between several hundred to ~ 2000 years before present (BP). These findings show that plant-mediated transport of CO&lt;sub&gt;2&lt;/sub&gt; produced in the catotelm may form a considerable component of peatland ecosystem respiration. The implication of this discovery is that current assumptions in terrestrial carbon models need to be re-evaluated to consider the climate sensitivity of this third source of peatland CO&lt;sub&gt;2&lt;/sub&gt;

    Potential future dynamics of carbon fluxes and pools in New England forests and their climatic sensitivities: A model-based study

    Get PDF
    Projections of terrestrial carbon (C) dynamics must account for interannual variation in ecosystem C exchange associated with climate change, increasing atmospheric CO2 concentration, and species dynamics. We used a dynamic ecosystem model to (i) project the potential dynamics of C in New England forests under nine climate change scenarios (CCSs) for the 21st century and (ii) examine the sensitivity of potential C dynamics to changes in climate and atmospheric CO2 concentration. Our results indicated that forest net primary productivity (NPP) and soil heterotrophic respiration (RH) averaged 428 and 279 gC/m2/yr and New England forests sequestered CO 2 by 149 gC/m2/yr in the baseline period (1971-2000). Under the nine future CCSs, NPP and RH were modeled to increase by an average rate of 0.85 and 0.56 gC/m2/yr2 during 1971-2099. The asymmetric increase in NPP and RH resulted in New England forests sequestering atmospheric CO2 at a net rate of 0.29 gC/m2/yr2 with increases in vegetation and soil C. Simulations also indicated that climate warming alone decreases NPP, resulting in a net efflux of C from forests. In contrast, increasing precipitation by itself stimulates CO 2 sequestration by forests. At the individual cell level, however, changes in temperature or precipitation can either positively or negatively affect consequent C dynamics. Elevation of CO2 levels was found to be the biggest driver for modeled future enhancement of C sequestration. Without the elevation of CO2 levels, climate warming has the potential to change New England forests from C sinks to sources in the late 21st century. ©2014. American Geophysical Union. All Rights Reserved
    corecore