334 research outputs found
The mysterious optical afterglow spectrum of GRB140506A at z=0.889
Context. Gamma-ray burst (GRBs) afterglows probe sightlines to star-forming
regions in distant star-forming galaxies. Here we present a study of the
peculiar afterglow spectrum of the z = 0.889 Swift GRB 140506A. Aims. Our aim
is to understand the origin of the very unusual properties of the absorption
along the line-of-sight. Methods. We analyse spectroscopic observations
obtained with the X-shooter spectrograph mounted on the ESO/VLT at two epochs
8.8 h and 33 h after the burst as well as imaging from the GROND instrument. We
also present imaging and spectroscopy of the host galaxy obtained with the
Magellan telescope. Results. The underlying afterglow appears to be a typical
afterglow of a long-duration GRB. However, the material along the line-of-
sight has imprinted very unusual features on the spectrum. Firstly, there is a
very broad and strong flux drop below 8000 AA (4000 AA in the rest frame),
which seems to be variable between the two spectroscopic epochs. We can
reproduce the flux-drops both as a giant 2175 AA extinction bump and as an
effect of multiple scattering on dust grains in a dense environment. Secondly,
we detect absorption lines from excited H i and He i. We also detect molecular
absorption from CH+ . Conclusions. We interpret the unusual properties of these
spectra as reflecting the presence of three distinct regions along the
line-of-sight: the excited He i absorption originates from an H ii-region,
whereas the Balmer absorption must originate from an associated
photodissociation region. The strong metal line and molecular absorption and
the dust extinction must originate from a third, cooler region along the
line-of-sight. The presence of (at least) three separate regions is reflected
in the fact that the different absorption components have different velocities
relative to the systemic redshift of the host galaxy.Comment: 8 pages, 4 figures. Accepted for publications in A&
The optical identifcation of events with poorly defined locations: The case of the Fermi GBM GRB140801A
We report the early discovery of the optical afterglow of gamma-ray burst
(GRB) 140801A in the 137 deg 3- error-box of the Fermi Gamma-ray
Burst Monitor (GBM). MASTER is the only observatory that automatically react to
all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart
was discovered solely from its GBM localization. The optical afterglow of GRB
140801A was found by MASTER Global Robotic Net 53 sec after receiving the
alert, making it the fastest optical detection of a GRB from a GBM error-box.
Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA
of SAO RAS reveals a redshift of . We performed optical and
near-infrared photometry of GRB 140801A using different telescopes with
apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many
ways. The rest-frame bolometric isotropic energy release and peak energy of the
burst is erg and
keV, respectively, which is consistent with the
Amati relation. The absence of a jet break in the optical light curve provides
a lower limit on the half-opening angle of the jet deg. The
observed is consistent with the limit derived from the
Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB
140801A could belong to the class of intermediate duration. The rapid detection
of the optical counterpart of GRB 140801A is especially important regarding the
upcoming experiments with large coordinate error-box areas.Comment: in press MNRAS, 201
A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium
The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure
A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst
A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts3,4 or in the tidal disruptions of a star3. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts5,6,7, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae8,9, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae20,20a
Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor
BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development
Rho GTPase function in flies: insights from a developmental and organismal perspective.
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development
Organization of multiprotein complexes at cell–cell junctions
The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance
Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data
We present a directed search for continuous gravitational wave (CW) signals
emitted by spinning neutron stars located in the inner parsecs of the Galactic
Center (GC). Compelling evidence for the presence of a numerous population of
neutron stars has been reported in the literature, turning this region into a
very interesting place to look for CWs. In this search, data from the full O3
LIGO--Virgo run in the detector frequency band have been
used. No significant detection was found and 95 confidence level upper
limits on the signal strain amplitude were computed, over the full search band,
with the deepest limit of about at .
These results are significantly more constraining than those reported in
previous searches. We use these limits to put constraints on the fiducial
neutron star ellipticity and r-mode amplitude. These limits can be also
translated into constraints in the black hole mass -- boson mass plane for a
hypothetical population of boson clouds around spinning black holes located in
the GC.Comment: 25 pages, 5 figure
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2–1.0 M and mass
ratio q ≥ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected
between 2019 November 1, 15:00 UTC and 2020 March 27, 17:00 UTC. No signals were detected. The most significant candidate
has a false alarm rate of 0.2 yr−1. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced
Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one
subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black
holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the
merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the
PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH 0.6 (at 90 per cent confidence)
in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1.
For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes,
we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes
- …