2,255 research outputs found
The response of the magnetosphere to the passage of a coronal mass ejection on March 20-21 1990
International audienceThe geomagnetic response to the passage of a coronal mass ejection (CME) is studied. The passage of the CME resulted in a storm sudden commencement (SSC) at 2243 UT on March 20 1990 with disturbed magnetic activity during the following 24 h. The auroral, sub-auroral and equatorial magnetic response to the southward turning at 1314 (±5) UT on March 21 and the equatorial response to the southward turning associated with the SSC on 20 March are discussed in terms of existing models. It is found that the auroral and sub-auroral response to the southward turning associated with the SSC is a factor 2 or more quicker than normal due to the shock in the solar wind dynamic pressure. The low-latitude response time to the southward turning, characterised by Dst and the magnetopause current corrected Dst*, is unaffected by the shock. Dst and Dst*, characteristic of the equatorial magnetic field, responded to the 1314 (±5) UT southward turning prior to the first observed substorm expansion phase onset, suggesting that a dayside loading process was responsible for the initial enhancement in the ring current rather than nightside particle injection. The response time of the auroral and sub-auroral magnetic field to the southward turning at 1314 (±5) UT on March 21 is measured at a variety of longitudes and latitudes. The azimuthal propagation velocity of the response to the southward turning varied considerably with latitude, ranging from ~8 km s?1 at 67°N to ~4 km s?1 at 55°N. The southward velocity of the equatorward boundary of the northern polar convection pattern has been measured. This velocity was ~1.2 km s?1 at 1600 MLT, although there was evidence that this may vary at different local times
Preliminary design studies of an advanced general aviation aircraft
The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance
Dielectric Behavior of Nonspherical Cell Suspensions
Recent experiments revealed that the dielectric dispersion spectrum of
fission yeast cells in a suspension was mainly composed of two sub-dispersions.
The low-frequency sub-dispersion depended on the cell length, whereas the
high-frequency one was independent of it. The cell shape effect was
qualitatively simulated by an ellipsoidal cell model. However, the comparison
between theory and experiment was far from being satisfactory. In an attempt to
close up the gap between theory and experiment, we considered the more
realistic cells of spherocylinders, i.e., circular cylinders with two
hemispherical caps at both ends. We have formulated a Green function formalism
for calculating the spectral representation of cells of finite length. The
Green function can be reduced because of the azimuthal symmetry of the cell.
This simplification enables us to calculate the dispersion spectrum and hence
access the effect of cell structure on the dielectric behavior of cell
suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of
the American Physical Society. Accepted for publications in J. Phys.:
Condens. Matte
Theoretical study: Influence of different energy sources on the cusp neutral density enhancement
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98815/1/jgra50197.pd
Interface modes of two-dimensional composite structures
The surface modes of a composite consisting of aligned metallic wires with
square cross sections are investigated, on the basis of photonic band structure
calculations. The effective long-wavelength dielectric response function is
computed, as a function of the filling fraction. The dependence of the optical
absorption on the shape of the wires and the polarization of light is
discussed, and the effect of sharp corners analyzed. The effect of the
interaction between the wires on the localization of surface plasmons is also
addressed.Comment: 12 pages, 4 figures, to appear in Surf. Sc
Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells
By means of a microscopic valence force field model, a series of novel
microscopic interface phonon modes are identified in shell quantum dots(SQDs)
composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few
atomic layers in thickness. In SQDs with such thin shells, the basic principle
of the continuum dielectric model and the macroscopic dielectric function are
not valid any more. The frequencies of these microscopic interface modes lie
inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to
the macroscopic interface phonon modes. The average vibrational energies and
amplitudes of each atomic shell show peaks at the interface between GaAs and
AlAs. These peaks decay fast as their penetrating depths from the interface
increase.Comment: 13 pages, 4 figure
On the feasibility of cooling and trapping metastable alkaline-earth atoms
Metastability and long-range interactions of Mg, Ca, and Sr in the
lowest-energy metastable state are investigated. The calculated
lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*,
supporting feasibility of cooling and trapping experiments. The
quadrupole-quadrupole long-range interactions of two metastable atoms are
evaluated for various molecular symmetries. Hund's case (c) 4_g potential
possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses
can possibly be reduced using cold metastable atoms in a stretched M=2 state.
Calculations were performed in the framework of ab initio relativistic
configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR
Pentacene islands grown on ultra-thin SiO2
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at
room temperature and characterized by scanning tunneling microscopy. The
ultra-thin oxide films were then used as substrates for room temperature growth
of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm,
indicating standing up pentacene grains in the thin-film phase were formed.
Pentacene is molecularly resolved in the second and subsequent molecular
layers. The measured in-plane unit cell for the pentacene (001) plane (ab
plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The
films are unperturbed by the UTO's short-range spatial variation in tunneling
probability, and reduce its corresponding effective roughness and correlation
exponent with increasing thickness. The pentacene surface morphology follows
that of the UTO substrate, preserving step structure, the long range surface
rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure
- …
