47 research outputs found

    An exceptional Albanian family with seven children presenting with dysmorphic features and mental retardation: maternal phenylketonuria

    Get PDF
    BACKGROUND: Phenylketonuria is an inborn error of amino acid metabolism which can cause severe damage to the patient or, in the case of maternal phenylketonuria, to the foetus. The maternal phenylketonuria syndrome is caused by high blood phenylalanine concentrations during pregnancy and presents with serious foetal anomalies, especially congenital heart disease, microcephaly and mental retardation. CASE PRESENTATION: We report on an affected Albanian woman and her seven children. The mother is affected by phenylketonuria and is a compound heterozygote for two pathogenetic mutations, L48S and P281L. The diagnosis was only made in the context of her children, all of whom have at least one severe organic malformation. The first child, 17 years old, has a double-chambered right ventricle, vertebral malformations and epilepsy. She is also mentally retarded, microcephalic, exhibits facial dysmorphies and small stature. The second child, a girl 15 years of age, has severe mental retardation with microcephaly, small stature and various dysmorphic features. The next sibling, a boy, died of tetralogy of Fallot at the age of three months. He also had multiple vertebral and rib malformations. The subsequent girl, now eleven years old, has mental retardation, microcephaly and epilepsy along with facial dysmorphy, partial deafness and short stature. The eight-year-old child is slightly mentally retarded and microcephalic. A five-year-old boy was a premature, dystrophic baby and exhibits mental retardation, dysmorphic facial features, brachydactyly and clinodactyly of the fifth finger on both hands. Following a miscarriage, our index case, the youngest child at two years of age, is microcephalic and mentally retarded and shows minor facial anomalies. All children exhibit features of phenylalanine embryopathy caused by maternal phenylketonuria because the mother had not been diagnosed earlier and, therefore, never received any diet. CONCLUSION: This is the largest family suffering from maternal phenylketonuria reported in the literature. Maternal phenylketonuria remains a challenge, especially in woman from countries without a neonatal screening program. Therefore, it is mandatory to be alert for the possibility of maternal phenylketonuria syndrome in case of a child with the clinical features described here to prevent foetal damage in subsequent siblings

    Growth Patterns in the Irish Pyridoxine Nonresponsive Homocystinuria Population and the Influence of Metabolic Control and Protein Intake

    Get PDF
    A low methionine diet is the mainstay of treatment for pyridoxine nonresponsive homocystinuria (HCU). There are various guidelines for recommended protein intakes for HCU and clinical practice varies. Poor growth has been associated with low cystine levels. This retrospective review of 48 Irish pyridoxine nonresponsive HCU patients assessed weight, height, body mass index (BMI), protein intake, and metabolic control up to 18 years at nine set time points. Patients diagnosed through newborn screening (NBS) were compared to late diagnosed (LD) patients. At 18 years the LD group (n=12, mean age at diagnosis 5.09 years) were heavier (estimated effect +4.97 Kg, P=0.0058) and taller (estimated effect +7.97 cm P=0.0204) than the NBS group (n=36). There was no difference in growth rate between the groups after 10 years of age. The HCU population were heavier and taller than the general population by one standard deviation with no difference in BMI. There was no association between intermittently low cystine levels and height. Three protein intake guidelines were compared; there was no difference in adult height between those who met the lowest of the guidelines (Genetic Metabolic Dietitians International) and those with a higher protein intake

    bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells

    Get PDF
    One of the master regulators of placental cell fusion in mammals leading to multi-nucleated syncytiotrophoblasts is the transcription factor GCMa. Recently, we proved that the cAMP-driven protein kinase A signaling pathway is fundamental for up-regulation of GCMa transcript levels and protein stability. Here, we show that Transducer of Regulated CREB activity (TORC1), the human co-activator of cAMP response element-binding protein (CREB), but not a dominant-negative CREB mutant, significantly up-regulates the GCMa promoter. We identified potential cAMP response element (CRE)-binding sites within the GCMa promoter upstream of the transcriptional start site. Only the CRE site at -1337 interacted strongly with CREB in promoter mapping experiments. The characterization of GCMa promoter mutants and additional bZIP-type family members demonstrated that also old astrocyte specifically-induced substance (OASIS) is able to stimulate GCMa transcription. Knockdown of endogenous CREB or OASIS in BeWo cells decreased endogenous GCMa mRNA level and activity. Overexpression of TORC1 or OASIS in choriocarcinoma cells led to placental cell fusion, accompanied by placental expression of gap junction forming protein connexin-43. Further, we show that CREB expression is replaced by OASIS expression around E12.5 suggesting that a sequential order of bZIP-type family members ensures a high rate of GCMa transcription throughout placentation

    Galactokinase deficiency:lessons from the GalNet registry

    Get PDF
    PURPOSE Galactokinase (GALK1) deficiency is a rare hereditary galactose metabolism disorder. Beyond cataract, the phenotypic spectrum is questionable. Data from affected patients included in the Galactosemias Network registry were collected to better characterize the phenotype. METHODS Observational study collecting medical data of 53 not previously reported GALK1 deficient patients from 17 centers in 11 countries from December 2014 to April 2020. RESULTS Neonatal or childhood cataract was reported in 15 and 4 patients respectively. The occurrence of neonatal hypoglycemia and infection were comparable with the general population, whereas bleeding diathesis (8.1% versus 2.17-5.9%) and encephalopathy (3.9% versus 0.3%) were reported more often. Elevated transaminases were seen in 25.5%. Cognitive delay was reported in 5 patients. Urinary galactitol was elevated in all patients at diagnosis; five showed unexpected Gal-1-P increase. Most patients showed enzyme activities ≤1%. Eleven different genotypes were described, including six unpublished variants. The majority was homozygous for NM_000154.1:c.82C>A (p.Pro28Thr). Thirty-five patients were diagnosed following newborn screening, which was clearly beneficial. CONCLUSION The phenotype of GALK1 deficiency may include neonatal elevation of transaminases, bleeding diathesis, and encephalopathy in addition to cataract. Potential complications beyond the neonatal period are not systematically surveyed and a better delineation is needed

    A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype

    Get PDF
    Background Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis. Methods Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed. Results We identified a cohort of 10 patients from 8 families (7 families are of unrelated Irish ancestry) all of whom have short stature (C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly. Conclusions Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features—particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry—should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations

    CERT1 mutations perturb human development by disrupting sphingolipid homeostasis

    Full text link
    Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome

    CERT1 mutations perturb human development by disrupting sphingolipid homeostasis

    Get PDF
    Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS), NIH (R01NS109858, to VAG); the Paul A. Marks Scholar Program at the Columbia University Vagelos College of Physicians and Surgeons (to VAG); a TIGER grant from the TAUB Institute at the Columbia Vagelos College of Physicians and Scientists (to VAG); the Swiss National Science Foundation (SNF 31003A-179371, to TH); the European Joint Program on Rare Diseases (EJP RD+SNF 32ER30-187505, to TH); the Swiss Cancer League (KFS-4999-02-2020, to GD); the EPFL institutional fund (to GD); the Kristian Gerhard Jebsen Foundation (to GD); the Swiss National Science Foundation (SNSF) (310030_184926, to GD); the Swiss Foundation for Research on Muscle Disease (FSRMM, to MAL); the Natural Science and Engineering Research Council of Canada (Discovery Grant 2020-04241, to JEB); the Italian Ministry of Health Young Investigator Grant (GR-2011-02347754, to EL); the Fondazione Istituto di Ricerca Pediatrica – Città della Speranza (18-04, to EL); the Wroclaw Medical University (SUB.E160.21.004, to RS); the National Science Centre, Poland (2017/27/B/NZ5/0222, to RS); Telethon Undiagnosed Diseases Program (TUDP) (GSP15001); the Temple Street Foundation/Children’s Health Foundation Ireland (RPAC 19-02, to IK); the Deutsche Forschungsgemeinschaft (DFG) (PO2366/2–1, to BP); the Instituto de Salud Carlos III, Spain (to ELM, EBS, and BMD); the National Natural Science Foundation of China (81871079 and 81730036, to HG and KX); and the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH (R01 DK115574, to SSC).The DEFIDIAG study is funded by grants from the French Ministry of Health in the framewok of the national French initiative for genomic medicine. The funders were not involved in the study design, data acquisition, analysis, or writing of the manuscript. Funding for the DECIPHER project was provided by Wellcome. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute (grant number WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12, granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.S

    Assessment of Dietary Intake of Iodine and Risk of Iodine Deficiency in Children with Classical Galactosaemia on Dietary Treatment

    No full text
    Iodine is an essential mineral required for the synthesis of thyroid hormones. Iodine plays a critical role in growth and neurocognitive development. Classical galactosaemia is a disorder resulting from an inborn error in galactose metabolism. Its current management consists of life-long lactose and galactose dietary restriction. This study estimated dietary intakes of iodine in infants and children with classical galactosaemia in the Republic of Ireland. The diets of 43 participants (aged 7 months–18 years) with classical galactosaemia were assessed for iodine intake using an iodine-specific food frequency questionnaire. Intakes were compared to the European Food Safety Authority (EFSA) dietary recommendations for iodine intake. The potential role of iodine fortification of dairy alternative products was also examined. There were no significant differences observed between sex, ethnicity and parental education and meeting dietary iodine recommendations. Differences, however, were seen between age groups, causing the p value to approach statistical significance (p = 0.06). Infants consuming infant formula were likely to meet iodine recommendations. However, over half (53%) of children aged 1–18 years had average intakes below the recommendations for age. For these children, consumption of iodine-fortified dairy alternative milk was the leading source of iodine in the diets, followed by fish/shellfish and eggs. An assessment of iodine intake should be undertaken during dietetic reviews for those with classical galactosaemia. Mandatory iodine fortification of all dairy alternative products would result in 92% of the total population cohort meeting iodine recommendations based on their current consumption

    Advances and challenges in the treatment of branched-chain amino/keto acid metabolic defects

    No full text
    Summary Disorders of branched-chain amino/keto acid metabolism encompass diverse entities, including maple syrup urine disease (MSUD), the \u27classical\u27 organic acidurias isovaleric acidemia (IVA), propionic acidemia (PA), methylmalonic acidemia (MMA) and, among others, rarely described disorders such as 2-methylbutyryl-CoA dehydrogenase deficiency (MBDD) or isobutyryl-CoA dehydrogenase deficiency (IBDD). Our focus in this review is to highlight the biochemical basis underlying recent advances and ongoing challenges of long-term conservative therapy including precursor/protein restriction, replenishment of deficient substrates, and the use of antioxidants and anaplerotic agents which refill the Krebs cycle. Ongoing clinical assessments of affected individuals in conjunction with monitoring of disease-specific biochemical parameters remain essential. It is likely that mass spectrometry-based \u27metabolomics\u27 may be a helpful tool in the future for studying complete biochemical profiles and diverse metabolic phenotypes. Prospective studies are needed to test the effectiveness of adjunct therapies such as antioxidants, ornithine-alpha- ketoglutarate (OKG) or creatine in addition to specialized diets and to optimize current therapeutic strategies in affected individuals. With the individual lifetime risk and degree of severity being unknown in asymptomatic individuals with MBDD or IBDD, instructions regarding risks for metabolic stress and fasting avoidance along with clinical monitoring are reasonable interventions at the current time. Overall, it is apparent that carefully designed prospective clinical investigations and multicenter cohort-controlled trials are needed in order to leverage that knowledge into significant breakthroughs in treatment strategies and appropriate approaches. © SSIEM and Springer 2011

    Effects of Various Dietary Amino Acid Preparations for Phenylketonuric Patients on the Metabolic Profiles along with Postprandial Insulin and Ghrelin Responses

    No full text
    Aim: We investigated the metabolic profiles along with insulin and ghrelin responses following ingestion of various amino acid (AA) substitutes commonly used in the treatment of phenylketonuria to study the effects of added macronutrients. Methods: Twenty healthy and 6 phenylketonuric adults ingested AA mixtures with or without carbohydrates and fat (Anamix, Easiphen, or p-am 3; 0.35 g AA/kg body weight); milk powder shakes were used for control purposes. Serum AA, glucose, urea, insulin, and ghrelin were measured over 5 h. Results: Peak AA concentrations were achieved at around 60 min postprandially for supplemented AA powders and control shakes, significantly later than for pure AA. Of interest, the mean Phe/Tyr ratio declined by 40– 50% in phenylketonuric patients following intake of Easiphen, Anamix, or p-am 3. The insulin peaks, up to 500% as compared with baseline, occurred at 30 min and were approximately 100% higher after intake of AA plus macronutrients. Glucose and urea remained constant. Ghrelin showed a nadir at 60 min, followed by a rise leading to a 30% increase of initial concentrations for pure AA as compared with more constant levels for preparations with macronutrients. Conclusion: An oral AA bolus together with macronutrients re- tards hyperaminoacidemia, displays a higher insulin secretion, normoglycemia, and more stable ghrelin concentra - tions, whereas the pure AA tested here exerted weaker anabolic effects
    corecore