168 research outputs found
Bridging the Analytical Gap Between Gas Treatment and Reactor Plants in Carbon2Chem<sub>®</sub>
The use of purified process gases as feedstock for subsequent processes requires a detailed verification of the gas purity to ensure long lifetimes of applied catalysts. Herein, the analytical infrastructure for the measurements of the cleaned gases is presented. An overview of all sampling points for the off- and on-line analysis is given. The detailed decryption of the composition of the cleaned blast furnace gas, its main components as well as its traces are presented. Thereby, over 99 % of the overall signal strength of this complex gas matrix measured with a proton transfer reaction mass spectrometer with H3O+ as reagent ion could be revealed. Furthermore, by the example of the catalyst poison H2S, the necessity of monitoring continuously the gas matrix for certain compounds was proven
Consensus based framework for digital mobility monitoring
Digital mobility assessment using wearable sensor systems has the potential to capture walking performance in a patient's natural environment. It enables monitoring of health status and disease progression and evaluation of interventions in real-world situations. In contrast to laboratory settings, real-world walking occurs in non-conventional environments and under unconstrained and uncontrolled conditions. Despite the general understanding, there is a lack of agreed definitions about what constitutes real-world walking, impeding the comparison and interpretation of the acquired data across systems and studies. The goal of this study was to obtain expert-based consensus on specific aspects of real-world walking and to provide respective definitions in a common terminological framework. An adapted Delphi method was used to obtain agreed definitions related to real-world walking. In an online survey, 162 participants from a panel of academic, clinical and industrial experts with experience in the field of gait analysis were asked for agreement on previously specified definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all rounds (31.5% response rate). We obtained consensus on all definitions ("Walking"> 90%, "Purposeful"> 75%, "Real-world"> 90%, "Walking bout"> 80%, "Walking speed"> 75%, "Turning"> 90% agreement) after two rounds. The identification of a consented set of realworld walking definitions has important implications for the development of assessment and analysis protocols, as well as for the reporting and comparison of digital mobility outcomes across studies and systems. The definitions will serve as a common framework for implementing digital and mobile technologies for gait assessment and are an important link for the transition from supervised to unsupervised gait assessment
Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
Parkinson’s disease (PD) is the second most common neurodegenerative disorder which requires a long-term, interdisciplinary disease management. While there remains no cure for Parkinson’s disease, treatments are available to help reduce the main symptoms and maintain quality of life for as long as possible. Owing to the global burden faced by chronic conditions such as PD, Assistive technologies (AT’s) are becoming an increasingly common prescribed form of treatment. Low adoption is hampering the potential of digital technologies within health and social care. It is then necessary to employ classification algorithms have been developed for differentiating adopters and non-adopters of these technologies; thereby, potential negative effects on people with PD and cost overruns can be further minimized. This paper bridges this gap by extending the Multi-criteria decision-making approach adopted in technology adoption modeling for people with dementia. First, the fuzzy Analytic Hierarchy Process (FAHP) is applied to estimate the initial relative weights of criteria and sub-criteria. Then, the Decisionmaking Trial and Evaluation Laboratory (DEMATEL) is used for evaluating the interrelations and feedback among criteria and sub-criteria. The Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS) is finally implemented to rank three classifiers (Lazy IBk – knearest neighbors, Naïve bayes, and J48 decision tree) according to their ability to model technology adoption. A real case study considering is presented to validate the proposed approach
Dopamine-Induced Conformational Changes in Alpha-Synuclein
Background: Oligomerization and aggregation of α-synuclein molecules play a major role in neuronal dysfunction and loss in Parkinson's disease [1]. However, α-synuclein oligomerization and aggregation have mostly been detected indirectly in cells using detergent extraction methods [2], [3], [4]. A number of in vitro studies showed that dopamine can modulate the aggregation of α-synuclein by inhibiting the formation of or by disaggregating amyloid fibrils [5], [6], [7]. Methodology/Principal Findings: Here, we show that α-synuclein adopts a variety of conformations in primary neuronal cultures using fluorescence lifetime imaging microscopy (FLIM). Importantly, we found that dopamine, but not dopamine agonists, induced conformational changes in α-synuclein which could be prevented by blocking dopamine transport into the cell. Dopamine also induced conformational changes in α-synuclein expressed in neuronal cell lines, and these changes were also associated with alterations in oligomeric/aggregated species. Conclusion/Significance: Our results show, for the first time, a direct effect of dopamine on the conformation of α-synuclein in neurons, which may help explain the increased vulnerability of dopaminergic neurons in Parkinson's disease
Consensus based framework for digital mobility monitoring
Digital mobility assessment using wearable sensor systems has the potential to capture walking performance in a patient’s natural environment. It enables monitoring of health status and disease progression and evaluation of interventions in real-world situations. In contrast to laboratory settings, real-world walking occurs in non-conventional environments and under unconstrained and uncontrolled conditions. Despite the general understanding, there is a lack of agreed definitions about what constitutes real-world walking, impeding the comparison and interpretation of the acquired data across systems and studies. The goal of this study was to obtain expert-based consensus on specific aspects of real-world walking and to provide respective definitions in a common terminological framework. An adapted Delphi method was used to obtain agreed definitions related to real-world walking. In an online survey, 162 participants from a panel of academic, clinical and industrial experts with experience in the field of gait analysis were asked for agreement on previously specified definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all rounds (31.5% response rate). We obtained consensus on all definitions (“Walking” > 90%, “Purposeful” > 75%, “Real-world” > 90%, “Walking bout” > 80%, “Walking speed” > 75%, “Turning” > 90% agreement) after two rounds. The identification of a consented set of real-world walking definitions has important implications for the development of assessment and analysis protocols, as well as for the reporting and comparison of digital mobility outcomes across studies and systems. The definitions will serve as a common framework for implementing digital and mobile technologies for gait assessment and are an important link for the transition from supervised to unsupervised gait assessment
Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis
Background/Aims: The expression of transporters involved in bile acid homeostasis is differentially regulated during obstructive cholestasis. Since the drug efflux transporter breast cancer resistance protein (BCRP) is known to transport bile acids, we investigated whether duodenal BCRP expression could be altered during cholestasis. Methods: Using real-time RT-PCR analysis we determined mRNA expression levels in duodenal tissue of 19 cholestatic patients. Expression levels were compared to 14 healthy subjects. BCRP protein staining was determined in biopsies of 6 cholestatic and 6 healthy subjects by immunohistochemistry. Results: We found that in patients with obstructive cholestasis mean duodenal BCRP mRNA levels were significantly reduced to 53% and mean protein staining was reduced to 57%. Conclusions: BCRP, a transporter for bile acids and numerous drugs, appears to be down-regulated in the human duodenum during cholestasis. The clinical impact of these results has to be investigated in further studies. Copyright (c) 2006 S. Karger AG, Basel
The HSP70 Molecular Chaperone Is Not Beneficial in a Mouse Model of α-synucleinopathy
BACKGROUND: Aggregation and misfolded alpha-synuclein is thought to be central in the pathogenesis of Parkinson's disease (PD). Heat-shock proteins (HSPs) that are involved in refolding and degradation processes could lower the aggregate load of alpha-synuclein and thus be beneficial in alpha-synucleinopathies. METHODOLOGY/PRINCIPAL FINDINGS: We co-overexpressed human A53T point-mutated alpha-synuclein and human HSP70 in mice, both under the control of Thy1 regulatory sequences. Behavior read-outs showed no beneficial effect of HSP70 expression in mice. In contrast, motor coordination, grip strength and weight were even worse in the alpha-synucleinopathy model in the presence of HSP70 overexpression. Biochemical analyses revealed no differences in alpha-synuclein oligomers/aggregates, truncations and phosphorylation levels and alpha-synuclein localization was unchanged in immunostainings. CONCLUSION/SIGNIFICANCE: Overexpressing HSP70 in a mouse model of alpha-synucleinopathy did not lower the toxic load of alpha-synuclein species and had no beneficial effect on alpha-synuclein-related motor deficits
Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies
publishersversionpublishe
Intrinsically Disordered Proteins Display No Preference for Chaperone Binding In Vivo
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein–protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins
Effects of Deletion of Macrophage ABCA7 on Lipid Metabolism and the Development of Atherosclerosis in the Presence and Absence of ABCA1
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen
- …