174 research outputs found

    Creation in the Prophetic Literature of the Old Testament: An Intertextual Approach

    Get PDF

    The Storm-God in the Ancient Near East [review] / by Alberto R.W. Green.

    Get PDF

    In the Old Testament Prophetic Literature

    Get PDF

    Application of fractional sensor fusion algorithms for inertial mems sensing

    Get PDF
    The work presents an extension of the conventional Kalman filtering concept for systems of fractional order (FOS). Modifications are introduced using the GrĂŒnwald‐Letnikov (GL) definition of the fractional derivative (FD) and corresponding truncation of the history length. Two versions of the fractional Kalman filter (FKF) are shown, where the FD is calculated directly or by augmenting the state vector with the estimate of the FD. The filters are compared to conventional integer order (IO) Position (P‐KF) and Position‐Velocity (PV‐KF) Kalman filters as well as to an adaptive Interacting Multiple‐Model Kalman Filter (IMM‐KF). The performance of the filters is assessed based on a hand and a head motion data set. The feasibility of the given approach is shown. First published online: 14 Oct 201

    The 'alternative' EMT switch

    Get PDF
    Epithelial to mesenchymal transition (EMT) is an essential process in embryonic development and is aberrantly induced in many disease settings. Work carried out by Chonghui Cheng's laboratory addressed the involvement of alternative RNA splicing in EMT and its link to tumour progression. They describe a switch in CD44 expression from variant isoform(s) to the standard isoform and showed, for the first time, that this is required for normal epithelial cells to undergo EMT. In addition, they link expression of the CD44 standard isoform with high-grade breast cancer and to activation of the phosphoinositide 3-kinase/Akt pathway and apoptosis resistance in a mouse model of recurrent disease

    TAC102 is a novel component of the mitochondrial genome segregation machinery in trypanosomes

    Get PDF
    Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    • 

    corecore